Modeling method based on support vector machines within the Bayesian evidence framework

被引:0
|
作者
Yan, Wei-Wu [1 ]
Chang, Jun-Lin [1 ]
Shao, Hui-He [1 ]
机构
[1] Dept. of Automat., Shanghai Jiaotong Univ., Shanghai 200030, China
来源
Kongzhi yu Juece/Control and Decision | 2004年 / 19卷 / 05期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
7
引用
收藏
页码:525 / 528
相关论文
共 50 条
  • [41] Bayesian Group Feature Selection for Support Vector Learning Machines
    Du, Changde
    Du, Changying
    Zhe, Shandian
    Luo, Ali
    He, Qing
    Long, Guoping
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT I, 2016, 9651 : 239 - 252
  • [42] On Bayesian inference, maximum entropy and support vector machines methods
    Costache, Mihai
    Lienou, Marie
    Datcu, Mihai
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 43 - +
  • [43] Union nonparallel support vector machines framework with consistency
    Li, Chun-Na
    Shao, Yuan-Hai
    Wang, Huajun
    Huang, Ling-Wei
    Zhao, Yu-Ting
    Xiu, Naihua
    Deng, Nai-Yang
    APPLIED SOFT COMPUTING, 2023, 136
  • [44] A Software Measurement Framework guided by Support Vector Machines
    Dahab, Sarah A.
    Maag, Stephane
    Che, Xiaoping
    2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), 2017, : 397 - 402
  • [45] Combined outputs framework for twin support vector machines
    Shao, Yuan-Hai
    Hua, Xiang-Yu
    Liu, Li-Ming
    Yang, Zhi-Min
    Deng, Nai-Yang
    APPLIED INTELLIGENCE, 2015, 43 (02) : 424 - 438
  • [46] A support vector machines framework for identification of infrared spectra
    Chowdhury, M. Arshad Zahangir
    Rice, Timothy E.
    Oehlschlaeger, Matthew A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2022, 128 (09):
  • [47] Support vector machines framework for linear signal processing
    Rojo-Alvarez, JL
    Camps-Valls, G
    Martínez-Ramón, M
    Soria-Olivas, E
    Navia-Vázquez, A
    Figueiras-Vidal, AR
    SIGNAL PROCESSING, 2005, 85 (12) : 2316 - 2326
  • [48] Combined outputs framework for twin support vector machines
    Yuan-Hai Shao
    Xiang-Yu Hua
    Li-Ming Liu
    Zhi-Min Yang
    Nai-Yang Deng
    Applied Intelligence, 2015, 43 : 424 - 438
  • [49] A support vector machines framework for identification of infrared spectra
    M. Arshad Zahangir Chowdhury
    Timothy E. Rice
    Matthew A. Oehlschlaeger
    Applied Physics B, 2022, 128
  • [50] A novel bounded loss framework for support vector machines
    Li, Feihong
    Yang, Hu
    NEURAL NETWORKS, 2024, 178