Creep behavior of Al-rich Fe-Al intermetallics

被引:0
|
作者
Univ of California, Irvine, United States [1 ]
机构
关键词
Activation energy - Aluminum - Creep - Dislocations (crystals) - Intermetallics - Mechanical properties - Stresses;
D O I
暂无
中图分类号
学科分类号
摘要
The compression creep behavior of two dual-phase intermetallic alloys (FeAl2-Fe2Al5 and FeAl3-Fe2Al5) was investigated over the temperature range 600-1000 °C. A normal primary creep stage, stress exponent between 4 and 5, and normal creep transient after a stress increase for the FeAl2-Fe2Al5 and FeAl3-Fe2Al5(T> 700 °C) materials suggest that the creep behavior of both is controlled by a dislocation climb process. The activation energy for creep for both materials is about 345 kJ mol-1. For FeAl3-Fe2Al5 tested at 700 °C, a stress exponent of 3.3 and an inverse creep transient after a stress increase suggest that viscous dislocation glide is the dominant deformation mechanism in this region. The activation energy for creep in this region is 280 kJ mol-1. The creep strength for FeAl2-Fe2Al5 is significantly lower than that for FeAl3-Fe2Al5. A comparison between FeAl3-Fe2Al5 and various Ni and Ti aluminides reveals that FeAl3-Fe2Al5 has superior specific strength except compared with TiAl.
引用
收藏
相关论文
共 50 条
  • [31] Creep of Fe-Al alloys with additions of niobium and carbon
    Dobes, Ferdinand
    MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE, 2011, 465 : 443 - 446
  • [32] Creep strength of centrifugally cast Al-rich TiAl alloys
    Sturm, D.
    Heilmaier, M.
    Saage, H.
    Paninski, M.
    Schmitz, G. J.
    Drevermann, A.
    Palm, M.
    Stein, F.
    Engberding, N.
    Kelm, K.
    Irsen, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 : 373 - 376
  • [33] Study of the Structure and Thermal Properties of Intermetallics from Fe-Al System
    Smiglewicz, A.
    Jablonska, M.
    Rodak, K.
    Tomaszewska, A.
    ACTA PHYSICA POLONICA A, 2016, 130 (04) : 1004 - 1006
  • [34] Surface microstructure changes in the mechanically strained Fe-Al based intermetallics
    Jirásková, Y
    Schneeweiss, O
    Milicka, K
    Svoboda, M
    Procházka, I
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 293 (1-2): : 215 - 222
  • [35] STUDY OF AL-RICH END OF TERNARY FE-CO-AL SYSTEM
    CHOPRA, KS
    PAPPAS, NJ
    CHIA, EH
    JOM-JOURNAL OF METALS, 1975, 27 (12): : A41 - A41
  • [36] MOSSBAUER STUDY OF AL6(FE,MN) FORMATION IN AL-RICH AL FE MN ALLOYS
    HOMONNAY, Z
    VERTES, A
    CZIRAKI, A
    OSZKO, A
    MENCZEL, G
    MURGAS, L
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-ARTICLES, 1990, 139 (01): : 127 - 134
  • [37] Oxide at the Al-rich Fe0.85Al0.15(110) surface
    Dai, Zongbei
    Alyabyeva, Natalia
    Van den Bossche, Maxime
    Borghetti, Patrizia
    Chenot, Stephane
    David, Pascal
    Koltsov, Alexey
    Renaud, Gilles
    Jupille, Jacques
    Cabailh, Gregory
    Noguera, Claudine
    Goniakowski, Jacek
    Lazzari, Remi
    PHYSICAL REVIEW MATERIALS, 2020, 4 (07):
  • [38] The Fe-Ni-Al phase diagram in the Al-rich (>50 at% Al) corner
    Chumak, Igor
    Richter, Klaus W.
    Ipser, Herbert
    INTERMETALLICS, 2007, 15 (11) : 1416 - 1424
  • [39] Revisiting diffusion in Fe-Al intermetallics: Experimental determination and phenomenological treatment
    Cui, Y. -W.
    Kato, R.
    Omori, T.
    Ohnuma, I.
    Oikawa, K.
    Kainuma, R.
    Ishida, K.
    SCRIPTA MATERIALIA, 2010, 62 (04) : 171 - 174
  • [40] Powder metallurgy processing of dual-phase Fe-Al intermetallics
    Jeng, Y.-L.
    Hayes, R.W.
    Wolfenstine, J.
    Lavernia, E.J.
    International Journal of Powder Metallurgy (Princeton, New Jersey), 1995, 31 (02):