Growth, saturation, and scaling behaviour of one- and two-dimensional disturbances in fluidized beds

被引:0
|
作者
Goz, M.F. [1 ]
Sundaresan, S. [1 ]
机构
[1] Princeton Univ, Princeton, United States
来源
Journal of Fluid Mechanics | 1998年 / 362卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Unsteady flow
引用
下载
收藏
页码:83 / 119
相关论文
共 50 条
  • [21] Scaling behaviour of two-dimensional polygon models
    Richard, C
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (3-4) : 459 - 493
  • [22] Scaling Behaviour of Two-Dimensional Polygon Models
    Christoph Richard
    Journal of Statistical Physics, 2002, 108 : 459 - 493
  • [23] An efficient method to simulate one- and two-dimensional delamination growth in composite laminates
    Chen, DJ
    Chan, WS
    Wang, BP
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1996, 15 (09) : 944 - 957
  • [24] Spatial luminescent properties and growth mechanism of one- and two-dimensional ZnO complexes
    Wang, J. B.
    Yan, H. L.
    Zhong, X. L.
    Yuan, X. L.
    Sekiguchi, T.
    JOURNAL OF LUMINESCENCE, 2011, 131 (05) : 1082 - 1085
  • [25] Efficient method to simulate one- and two-dimensional delamination growth in composite laminates
    Univ of Texas at Arlington, Arlington, United States
    J Reinf Plast Compos, 9 (944-957):
  • [26] Scaling laws for one- and two-dimensional random wireless networks in the low-attenuation regime
    Oezguer, Ayfer
    Leveque, Olivier
    Preissmann, Emmanuel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (10) : 3573 - 3585
  • [27] Dimensional evolution between one- and two-dimensional topological phases
    Guo, Huaiming
    Lin, Yang
    Shen, Shun-Qing
    PHYSICAL REVIEW B, 2014, 90 (08)
  • [28] Two-Dimensional Rational Automata: A Bridge Unifying One- and Two-Dimensional Language Theory
    Anselmo, Marcella
    Giammarresi, Dora
    Madonia, Maria
    SOFSEM 2013: Theory and Practice of Computer Science, 2013, 7741 : 133 - 145
  • [29] One- and two-dimensional diffusion of metal atoms in graphene
    Gan, Yanjie
    Sun, Litao
    Banhart, Florian
    SMALL, 2008, 4 (05) : 587 - 591
  • [30] Homoclinic orbits bifurcations of one- and two-dimensional maps
    Belykh, VN
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1169 - 1176