Cryogenic temperature sensors

被引:0
|
作者
Niculescu, D. [1 ]
Cruceanu, E. [1 ]
机构
[1] Inst de Fizica si Tehnologia, Materialelor, Romania
来源
Metrologia aplicata | 1988年 / 35卷 / 01期
关键词
Carbon--Amorphous - Cryogenics--Low temperature phenomena - Electron Beams--Applications - Films--Vapor Deposition - Sensors--Design;
D O I
暂无
中图分类号
学科分类号
摘要
The technology of a carbon film resistance thermometer operating in the temperature range 4.2-20 K, the R (T) characteristics, and the magnetoresistance in high magnetic fields, up to 7 T are reported. Electron beam evaporation was used as the evaporation technique. R-X diffraction and transmission electron microscopy observations have shown an amorphous character for the deposited films. The sensitivity of these thermometers is comparable to or higher than the sensitivity of similar thermometers found on the international market. The magnetoresistance at 4.2 K and 7 T is very low, thus ensuring an error of 0.7-2 percent in the temperature instruments.
引用
收藏
页码:34 / 37
相关论文
共 50 条
  • [21] Radiation effects on cryogenic temperature sensors of Cernox, CGR and PtCo
    Tominaka, T
    Okuno, H
    Ohnishi, J
    Fukunishi, N
    Ryuto, H
    Ohtake, M
    Ikegami, K
    Goto, A
    Yano, Y
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2004, 14 (02) : 1802 - 1805
  • [22] Irradiation of cryogenic temperature sensors by gamma dose of 1 MGy
    Filippov, Yu. P.
    Miklayev, V. M.
    Sukhanova, A. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04):
  • [23] Fabrication of zirconium nitride thin film for cryogenic temperature sensors
    Assis, Anu
    Shahana, T. K.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [24] Characterization of Bipolar Transistors for Cryogenic Temperature Sensors in Standard CMOS
    Song, Lin
    Homulle, Harald
    Charbon, Edoardo
    Sebastiano, Fabio
    2016 IEEE SENSORS, 2016,
  • [25] A measurement of the Lorentz angle in silicon strip sensors at cryogenic temperature
    Johnson, I
    Amsler, C
    Chiochia, V
    Dorokhov, A
    Pruys, H
    Regenfus, C
    Rochet, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 540 (01): : 113 - 120
  • [26] High precision temperature measurement for cryogenic temperature sensors based on deep learning technology
    Liu, Huidong
    Zhu, Kanglai
    You, Minmin
    Li, Yanjie
    Liu, Jingquan
    Lin, Zude
    CRYOGENICS, 2024, 140
  • [27] Experimental investigation of optical fiber temperature sensors at cryogenic temperature and in high magnetic fields
    Tanaka, Y.
    Ogata, M.
    Nagashima, K.
    Agawa, H.
    Matsuura, S.
    Kumagai, Y.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (20): : 1890 - 1894
  • [28] Effects of high intensity cryogenic irradiation and magnetic field on temperature sensors
    Filippov, YP
    Golikov, VV
    Kulagin, EN
    Shabratov, VG
    ADVANCES IN CRYOGENIC ENGINEERING, VOL 43 PTS A AND B, 1998, 43 : 773 - 780
  • [29] Cryogenic fiber optic temperature sensors based on fiber Bragg gratings
    Yeager, C. J.
    McGee, C.
    Maklad, M.
    Swinehart, P. R.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 51A AND B, 2006, 823 : 267 - +
  • [30] Strain Calibration of Substrate-Free FBG Sensors at Cryogenic Temperature
    Venkatesan, Venkataraman Narayanan
    Weiss, Klaus-Peter
    Bharti, Ram Prakash
    Neumann, Holger
    Ramalingam, Rajinikumar
    INTERNET OF THINGS: IOT INFRASTRUCTURES, IOT 360, PT II, 2016, 170 : 191 - 202