A parallel algorithm for matrix inversion based on the Sherman-Morrison formula

被引:0
|
作者
Martínez, Ángeles [1 ]
Mas, José [2 ]
机构
[1] Dipartimento di Metodi, Università di Padova, Via Belzoni, 7 Padova, Italy
[2] Dept. de Matemàtica Aplicada, Univ. Politecnica de Valencia, Camí de Vera, 14, 46022 València, Spain
关键词
D O I
暂无
中图分类号
学科分类号
摘要
6
引用
收藏
页码:45 / 49
相关论文
共 50 条
  • [21] Application of a generalized Sherman-Morrison formula to the computation of network Green's functions and the construction of spanning trees
    Pozrikidis, C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [22] Application of the Sherman-Morrison formula to short-circuit analysis of transmission networks with phase-shifting transformers
    Kacejko, Piotr
    Machowski, Jan
    ELECTRIC POWER SYSTEMS RESEARCH, 2018, 155 : 289 - 295
  • [23] The Sherman-Morrison formula for the determinant and its application for optimizing quadratic functions on condition sets given by extreme generators
    Kéri, G
    OPTIMIZATION THEORY: RECENT DEVELOPMENTS FROM MATRAHAZA, 2001, 59 : 119 - 138
  • [24] Fast satellite selection algorithm for GNSS multi-system based on Sherman–Morrison formula
    Junpeng Shi
    Kezhao Li
    Lin Chai
    Lingfeng Liang
    Chendong Tian
    Keke Xu
    GPS Solutions, 2023, 27
  • [25] Sherman-Morrison Formula Aided Adaptive Channel Estimation for Underwater Visible Light Communication With Fractionally-Sampled OFDM
    Chen, Junyu
    Zhao, Lei
    Jiang, Ming
    Wu, Zhiqiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2784 - 2798
  • [26] 基于Sherman-Morrison公式的K-FAC算法
    刘小雷
    高凯新
    王勇
    计算机系统应用, 2021, 30 (04) : 118 - 124
  • [27] Box Math and KSM: Extending Sherman-Morrison to Functions of Interval Matrices
    Kelsey, Ralph
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 338 - 343
  • [28] The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications
    Hao, Yue
    Simoncini, Valeria
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)
  • [29] Direct Solution of MoM Matrix Equation Using Sherman-Morrison-Woodbury Formula-Based Algorithm With ACA-SVD
    Chen, Xinlei
    Gu, Changqing
    Niu, Zhenyi
    Li, Zhuo
    2015 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), VOLS 1-3, 2015,
  • [30] A generalization of the Sherman-Morrison-Woodbury formula
    Deng, Chun Yuan
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1561 - 1564