Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians

被引:0
|
作者
Bloch, Anthony M. [1 ]
Leonard, Naomi Ehrich [1 ]
Marsden, Jerrold E. [1 ]
机构
[1] Univ of Michigan, Ann Arbor, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:500 / 505
相关论文
共 50 条
  • [31] Design of Asynchronous Motor Controller Based on Controlled Lagrangians Method
    Gao, Yunbo
    Liu, Jianqiang
    Li, Maoqing
    Tian, Zhiyu
    Li, Cuiran
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [32] Controlled Lagrangians and Stabilization of Euler-Poincaré Equations with Symmetry Breaking Nonholonomic Constraints
    Garcia, Jorge S.
    Ohsawa, Tomoki
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [33] Geometric Control of the Brachiation Robot using Controlled Lagrangians Method
    Tashakori, Shabnam
    Vossoughi, Gholamreza
    Yazdi, Ehsan Azadi
    2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 706 - 710
  • [34] INVERSE MOTION METHOD FOR THE STABILIZATION OF UNDERACTUATED INERTIA WHEEL PENDULUM
    Zhang, Ancai
    She, Jinhua
    Qiu, Jianlong
    Luo, Chaomin
    Yang, Chengdong
    Alsaadi, Fawaz E.
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2019, 34 (03): : 243 - 252
  • [35] A Recursive Design Method of Stabilization Controller for the Inertia Wheel Pendulum
    Wang Yiqing
    Li Sheng
    Chen Qingwei
    2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 1333 - 1336
  • [36] Systematic design method of stabilization fuzzy controllers for pendulum systems
    Yi, JQ
    Yubazaki, N
    Hirota, K
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2001, 16 (08) : 983 - 1008
  • [37] Stabilization of Mechanical Systems on Semidirect Product Lie Groups with Broken Symmetry via Controlled Lagrangians
    Contreras, Cesar
    Ohsawa, Tomoki
    IFAC PAPERSONLINE, 2021, 54 (19): : 106 - 112
  • [38] Controlled Lagrangians and stabilization of Euler–Poincaré mechanical systems with broken symmetry II: potential shaping
    César Contreras
    Tomoki Ohsawa
    Mathematics of Control, Signals, and Systems, 2022, 34 : 329 - 359
  • [39] Nonlinear Stabilizer with Nonconstant Vector Γ for the Pendubot Based on Controlled Lagrangians Method
    Li, Mao-Qing
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2889 - 2894
  • [40] Analysis of a pendulum on a rotating arm
    Schmidt, Bertram A.
    McDowell, David G.
    Journal of Applied Mechanics, Transactions ASME, 1992, 59 (01): : 233 - 234