Boundary higher integrability for the gradient of very weak solutions of nonhomogeneous harmonic type equation

被引:0
|
作者
Xie, S.-Y. [1 ]
Zhang, J. [1 ]
机构
[1] Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
来源
Xiangtan Daxue Ziran Kexue Xuebao | 2001年 / 23卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
14
引用
收藏
页码:6 / 10
相关论文
共 50 条
  • [21] Optimal partial regularity of very weak solutions to nonhomogeneous A-harmonic systems
    Zhao, Qing
    Chen, Shuhong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [22] Regularity for Very Weak Solutions of A-Harmonic Equation with Weight
    Gao Hong-ya
    Zhang Yu
    Chu Yu-ming
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (02): : 195 - 202
  • [23] EXTREMUM PRINCIPLE FOR VERY WEAK SOLUTIONS OF A-HARMONIC EQUATION
    Gao Hongya
    Li Juan
    Deng Yanjun
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (03): : 235 - 240
  • [24] ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS
    DIBENEDETTO, E
    MANFREDI, J
    AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) : 1107 - 1134
  • [25] On Higher Integrability of the Gradient of Solutions to the Zaremba Problem for p-Laplace Equation
    Alkhutov, Yu. A.
    D'Apice, C.
    Kisatov, M. A.
    Chechkina, A. G.
    DOKLADY MATHEMATICS, 2023, 108 (01) : 282 - 285
  • [26] On Higher Integrability of the Gradient of Solutions to the Zaremba Problem for p-Laplace Equation
    Yu. A. Alkhutov
    C. D’Apice
    M. A. Kisatov
    A. G. Chechkina
    Doklady Mathematics, 2023, 108 : 282 - 285
  • [27] The existence of solutions to the nonhomogeneous A-harmonic equation
    Guanfeng Li
    Yong Wang
    Gejun Bao
    Journal of Inequalities and Applications, 2011
  • [28] The existence of solutions to the nonhomogeneous A-harmonic equation
    Li, Guanfeng
    Wang, Yong
    Bao, Gejun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [29] On Higher Integrability of Solutions to the Poisson Equation with Drift in Domains Perforated Along the Boundary
    Chechkin, G. A.
    Chechkina, T. P.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (03) : 407 - 417
  • [30] Higher integrability near the initial boundary for nonhomogeneous parabolic systems of p-Laplacian type
    Byun, Sun-Sig
    Kim, Wontae
    Lim, Minkyu
    FORUM MATHEMATICUM, 2020, 32 (06) : 1539 - 1559