On Application of the Space-Time Finite Element to the Heat Conduction Problems.

被引:0
|
作者
Kaczkowski, Zbigniew
机构
来源
| 1600年 / 31期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
THERMAL CONDUCTIVITY
引用
收藏
相关论文
共 50 条
  • [31] SPREADSHEET ANALYSIS OF HEAT CONDUCTION PROBLEMS.
    Thompson, Dr.Tommie R.
    CoED, 1988, 8 (03): : 47 - 51
  • [32] Space-time unfitted finite element methods for time-dependent problems on moving domains
    Badia, Santiago
    Dilip, Hridya
    Verdugo, Francesc
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 135 : 60 - 76
  • [33] SPACE-TIME NONLOCAL MODEL FOR HEAT-CONDUCTION
    SOBOLEV, SL
    PHYSICAL REVIEW E, 1994, 50 (04): : 3255 - 3258
  • [34] A novel combined space-time algorithm for transient heat conduction problems with heat sources in complex geometry
    Qiu, Lin
    Wang, Fajie
    Lin, Ji
    Qin, Qing-Hua
    Zhao, Qinghai
    COMPUTERS & STRUCTURES, 2021, 247
  • [35] APPLICATION OF FINITE ELEMENT METHOD TO HEAT CONDUCTION ANALYSIS
    WILSON, EL
    NICKELL, RE
    NUCLEAR ENGINEERING AND DESIGN, 1966, 4 (03) : 276 - &
  • [36] Adaptive space-time finite element solution for Volterra equations arising in viscoelasticity problems
    Shaw, S
    Whiteman, JR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 337 - 345
  • [37] Space-time finite element approximation and numerical solution of hereditary linear viscoelasticity problems
    Orlik, Julia
    Ostrovska, Arina
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (02): : 123 - 150
  • [38] SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH ENERGY REGULARIZATION
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 675 - 695
  • [39] NUMERICAL SOLUTIONS OF QUASILINEAR PARABOLIC PROBLEMS BY A CONTINUOUS SPACE-TIME FINITE ELEMENT SCHEME
    Toulopoulos, Ioannis
    SIAM Journal on Scientific Computing, 2022, 44 (05):
  • [40] Space-time finite element approximation and numerical solution of hereditary linear viscoelasticity problems
    Orlik, Julia
    Ostrovska, Arina
    Computational and Applied Mathematics, 2008, 27 (02) : 123 - 150