Sintering pressure profile analysis by correlation and canonical correlation

被引:0
|
作者
Faculdade de Engenharia de U., Portugal [1 ]
机构
来源
Ironmaking and Steelmaking | 1997年 / 24卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:150 / 154
相关论文
共 50 条
  • [41] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [42] Quantum discriminative canonical correlation analysis
    Li, Yong-Mei
    Liu, Hai-Ling
    Pan, Shi-Jie
    Qin, Su-Juan
    Gao, Fei
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (04)
  • [43] Sparse Weighted Canonical Correlation Analysis
    MIN Wenwen
    LIU Juan
    ZHANG Shihua
    ChineseJournalofElectronics, 2018, 27 (03) : 459 - 466
  • [44] Canonical Correlation Analysis Neural Networks
    Fyfe, C
    Lai, PL
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 977 - 980
  • [45] A Local Method for Canonical Correlation Analysis
    Ye, Tengju
    Xie, Zhipeng
    Li, Ang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2015, 2015, 9362 : 428 - 435
  • [46] Biclustering by sparse canonical correlation analysis
    Harold Pimentel
    Zhiyue Hu
    Haiyan Huang
    Quantitative Biology, 2018, 6 (01) : 56 - 67
  • [47] Model Tuning with Canonical Correlation Analysis
    Marzban, Caren
    Sandgathe, Scott
    Doyle, James D.
    MONTHLY WEATHER REVIEW, 2014, 142 (05) : 2018 - 2027
  • [48] On local influence in canonical correlation analysis
    Tanaka, Y
    Zhang, F
    Yang, WS
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (12) : 2325 - 2347
  • [49] Adaptive diagonalization for canonical correlation analysis
    Hasan, Mohammed A.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1906 - 1911
  • [50] Probabilistic Partial Canonical Correlation Analysis
    Mukuta, Yusuke
    Harada, Tatsuya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1449 - 1457