Newton maps: Fractals from Newton's method for the circle map

被引:0
|
作者
Cartwright, Julyan H.E. [1 ]
机构
[1] Inst. Andaluz de Cie. de la Tierra, CSIC-Universidad de Granada, E-18071, Granada, Spain
来源
Computers and Graphics (Pergamon) | 1999年 / 23卷 / 04期
关键词
Fractals;
D O I
暂无
中图分类号
学科分类号
摘要
To understand why two interacting oscillators synchronize with each other, or lock together and resonate at some rational frequency ratio, dynamical-systems theory shows that one should study circle maps and their periodic orbits. One can easily explore the structure of these periodic orbits using Newton maps, derived from Newton's method for finding the roots of an equation. I present here some interesting and beautiful examples of fractals encountered in Newton maps while investigating the periodic orbits of circle maps.
引用
收藏
页码:607 / 612
相关论文
共 50 条
  • [31] Combinatorial Properties of Newton Maps
    Lodge, Russell
    Mikulich, Yauhen
    Schleicher, Dierk
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (05) : 1833 - 1867
  • [32] On the core entropy of Newton maps
    Yan Gao
    Science China(Mathematics), 2024, 67 (01) : 77 - 128
  • [33] On the core entropy of Newton maps
    Yan Gao
    Science China Mathematics, 2024, 67 : 77 - 128
  • [34] Rational and Transcendental Newton Maps
    Rueckert, Johannes
    HOLOMORPHIC DYNAMICS AND RENORMALIZATION:: A VOLUME IN HONOUR OF JOHN MILNOR'S 75TH BIRTHDAY, 2008, 53 : 197 - 211
  • [35] AN IMPROVEMENT OF THE REGION OF ACCESSIBILITY OF CHEBYSHEV'S METHOD FROM NEWTON'S METHOD
    Ezquerro, J. A.
    Hernandez, M. A.
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1613 - 1627
  • [36] On the convergence of open Newton's method
    Kunnarath, Ajil
    George, Santhosh
    Sadananda, Ramya
    Padikkal, Jidesh
    Argyros, Ioannis K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2473 - 2500
  • [37] Chaotic Convergence of Newton's Method
    Allen, Jont B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1683 - 1690
  • [38] Accelerated convergence in Newton's method
    Ford, WF
    Pennline, JA
    SIAM REVIEW, 1996, 38 (04) : 658 - 659
  • [39] On the Newton's method for transcendental functions
    Kriete, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2001, 41 (03): : 611 - 625
  • [40] On the radius convergence of Newton's method
    Argyros, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (03) : 389 - 400