Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates

被引:2
|
作者
Brizard, A. [1 ]
机构
[1] Princeton Univ, United States
关键词
Electrostatics - Magnetic Fields - Mathematical Techniques--Perturbation Techniques;
D O I
暂无
中图分类号
学科分类号
摘要
A gyrokinetic formalism using magnetic co-ordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic co-ordinates is an important feature of this work since it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the action-variational Lie perturbation method of Cary & Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry or electrostatic perturbations in toroidal geometry. In this present work fully electromagnetic perturbations in toroidal geometry are considered.
引用
收藏
页码:541 / 559
相关论文
共 50 条
  • [31] A unified formulation for the three-dimensional shallow water equations using orthogonal co-ordinates: theory and application
    Herman W. J. Kernkamp
    Henri A. H. Petit
    Herman Gerritsen
    Erik D. de Goede
    Ocean Dynamics, 2005, 55 : 351 - 369
  • [32] Evaluation of local co-ordinates in finite elements using genetic algorithms
    Pathak, K.K.
    Dutt, Puja
    Ramakrishnan, N.
    Journal of Structural Engineering (Madras), 2009, 35 (06): : 453 - 456
  • [33] Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations
    Na, D. -Y.
    Moon, H.
    Omelchenko, Y. A.
    Teixeira, F. L.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [34] Schwarz domain decomposition for the incompressible Navier-Stokes equations in general co-ordinates
    Brakkee, E
    Wesseling, P
    Kassels, CGM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 32 (02) : 141 - 173
  • [35] A unified formulation for the three-dimensional shallow water equations using orthogonal co-ordinates: theory and application
    Kernkamp, Herman W. J.
    Petit, Henri A. H.
    Gerritsen, Herman
    de Goede, Erik D.
    OCEAN DYNAMICS, 2005, 55 (3-4) : 351 - 369
  • [36] Calculating concentration contour co-ordinates using integral plume models
    Vilchez, JA
    Planas-Cuchi, E
    Casal, J
    Amaldos, J
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2002, 15 (06) : 507 - 515
  • [37] METHOD OF EVALUATING COMPLEX ZEROS OF POLYNOMIALS USING POLAR CO-ORDINATES
    BODMER, WF
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 52 - &
  • [38] Forest Fire Alerting System With GPS Co-ordinates Using IoT
    Jayaram, K.
    Janani, K.
    Jeyaguru, R.
    Kumaresh, R.
    Muralidharan, N.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 488 - 491
  • [39] Solving Vlasov-Maxwell Equations by Using Hamiltonian Splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [40] Solving the Vlasov-Maxwell equations using Hamiltonian splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 381 - 399