Simple algorithm for finding a maximum clique and its worst-case time complexity

被引:0
|
作者
机构
[1] Shindo, Mikio
[2] Tomita, Etsuji
来源
Shindo, Mikio | 1600年 / 21期
关键词
Computation Time - Maximum Cliques - Time Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
相关论文
共 50 条
  • [31] On the probablistic worst-case time of "Find"
    Devroye, L
    ALGORITHMICA, 2001, 31 (03) : 291 - 303
  • [32] THE WORST-CASE RUNNING TIME OF THE RANDOM SIMPLEX ALGORITHM IS EXPONENTIAL IN THE HEIGHT
    BRODER, AZ
    DYER, ME
    FRIEZE, AM
    RAGHAVAN, P
    UPFAL, E
    INFORMATION PROCESSING LETTERS, 1995, 56 (02) : 79 - 81
  • [33] On the Probablistic Worst-Case Time of ``Find''
    L. Devroye
    Algorithmica, 2001, 31 : 291 - 303
  • [34] AVERAGE CASE COMPLEXITY UNDER THE UNIVERSAL DISTRIBUTION EQUALS WORST-CASE COMPLEXITY
    MING, L
    VITANYI, PMB
    INFORMATION PROCESSING LETTERS, 1992, 42 (03) : 145 - 149
  • [35] Relations between average-case and worst-case complexity
    Pavan, A
    Vinodchandran, NV
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 422 - 432
  • [36] Relations between average-case and worst-case complexity
    Pavan, A.
    Vinodchandran, N. V.
    THEORY OF COMPUTING SYSTEMS, 2008, 42 (04) : 596 - 607
  • [37] A Low-Complexity Algorithm for Worst-Case Utility Maximization in Multiuser MISO Downlink
    Wang, Kun-Yu
    Wang, Haining
    Ding, Zhi
    Chi, Chong-Yung
    2013 IEEE 78TH VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2013,
  • [38] Relations between Average-Case and Worst-Case Complexity
    A. Pavan
    N. V. Vinodchandran
    Theory of Computing Systems, 2008, 42 : 596 - 607
  • [39] Worst-Case Analysis is Maximum-A-Posteriori Estimation
    Wu, Hongjun
    Wang, Di
    arXiv, 2023,
  • [40] Cryptographic Functions from Worst-Case Complexity Assumptions
    Micciancio, Daniele
    LLL ALGORITHM: SURVEY AND APPLICATIONS, 2010, : 427 - 452