Sharp constant in a Sobolev inequality

被引:0
|
作者
Wang, Xu-Jia
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] On the sharp Hardy inequality in Sobolev-Slobodeckii spaces
    Bianchi, Francesca
    Brasco, Lorenzo
    Zagati, Anna Chiara
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 493 - 555
  • [32] The sharp quantitative Sobolev inequality for functions of bounded variation
    Fusco, N.
    Maggi, F.
    Pratelli, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 315 - 341
  • [33] Computing the best constant in the Sobolev inequality for a ball
    Ercole, Grey
    do Espirito Santo, Julio Cesar
    Martins, Eder Marinho
    APPLICABLE ANALYSIS, 2019, 98 (07) : 1307 - 1323
  • [34] The best constant of Sobolev inequality on a bounded interval
    Watanabe, K.
    Kametaka, Y.
    Nagai, A.
    Takemura, K.
    Yamagishi, H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 699 - 706
  • [35] WULFF THEOREM AND BEST CONSTANT IN SOBOLEV INEQUALITY
    DACOROGNA, B
    PFISTER, CE
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1992, 71 (02): : 97 - 118
  • [36] On the best constant in a Poincare-Sobolev inequality
    Egorov, YV
    DIFFERENTIAL OPERATORS AND RELATED TOPICS, 2000, 117 : 101 - 109
  • [37] The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space
    Benguria, Rafael D.
    Frank, Rupert L.
    Loss, Michael
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (04) : 613 - 622
  • [38] A sharp Hardy-Sobolev inequality with boundary term and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [40] The sharp Gagliardo-Nirenberg-Sobolev inequality in quantitative form
    Van Hoang Nguyen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) : 2179 - 2208