Law of the Euler scheme for stochastic differential equations

被引:0
|
作者
机构
来源
Z Angew Math Mech ZAMM | / Suppl 3卷 / 207期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations
    Yi, Yulian
    Hu, Yaozhong
    Zhao, Jingjun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [32] EULER SCHEME AND MEASURABLE FLOWS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS
    Wang, Zhiming
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 157 - 168
  • [34] A random Euler scheme for Caratheodory differential equations
    Jentzen, A.
    Neuenkirch, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 346 - 359
  • [35] The Euler scheme for random impulsive differential equations
    Wu, Shujin
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 164 - 175
  • [36] Mixing rates for the Euler scheme for Stochastic difference equations
    Veretennikov, AY
    Klokov, SA
    DOKLADY MATHEMATICS, 2004, 69 (02) : 273 - 274
  • [37] On the Convergence Analysis of the Inexact Linearly Implicit Euler Scheme for a Class of Stochastic Partial Differential Equations
    Cioica, P. A.
    Dahlke, S.
    Doehring, N.
    Friedrich, U.
    Kinzel, S.
    Lindner, F.
    Raasch, T.
    Ritter, K.
    Schilling, R. L.
    POTENTIAL ANALYSIS, 2016, 44 (03) : 473 - 495
  • [38] On the Convergence Analysis of the Inexact Linearly Implicit Euler Scheme for a Class of Stochastic Partial Differential Equations
    P. A. Cioica
    S. Dahlke
    N. Döhring
    U. Friedrich
    S. Kinzel
    F. Lindner
    T. Raasch
    K. Ritter
    R. L. Schilling
    Potential Analysis, 2016, 44 : 473 - 495
  • [39] MODIFIED EULER SCHEME FOR WEAK APPROXIMATION OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY WIENER PROCESS
    Bodnarchuk, S. V.
    Kulik, O. M.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 99 : 51 - 62
  • [40] The Euler scheme for stochastic differential equations with discontinuous drift coefficient: a numerical study of the convergence rate
    Goettlich, S.
    Lux, K.
    Neuenkirch, A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)