A corrective smoothed particle method for boundary value problems in heat conduction

被引:0
|
作者
EMRTC, New Mexico Tech., Socorro, NM, United States [1 ]
机构
来源
Int. J. Numer. Methods Eng. | / 2卷 / 231-252期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Modeling of Boundary-Value Problems of Heat Conduction for Multilayered Hollow Cylinder
    Tatsiy, Roman
    Stasiuk, Marta
    Pazen, Oleg
    Vovk, Sergiy
    2018 INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE: PROBLEMS OF INFOCOMMUNICATIONS SCIENCE AND TECHNOLOGY (PIC S&T), 2018, : 21 - 25
  • [32] The Dynamical Functional Particle Method: An Approach for Boundary Value Problems
    Edvardsson, Sverker
    Gulliksson, M.
    Persson, J.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (02):
  • [33] Multi-region heat conduction problems by boundary element method
    Atalay, MA
    Aydin, ED
    Aydin, M
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (6-7) : 1549 - 1553
  • [34] A boundary element method using DRM for nonlinear heat conduction problems
    Tanaka, M
    Matsumoto, T
    Suda, Y
    BOUNDARY ELEMENTS XXIV: INCORPORATING MESHLESS SOLUTIONS, 2002, 13 : 353 - 362
  • [35] Inverse ARX (IARX) method for boundary specification in heat conduction problems
    Oliveira, A. V. S.
    Zacharie, C.
    Remy, B.
    Schick, V
    Marechal, D.
    Teixeira, J.
    Denis, S.
    Gradeck, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [36] Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method
    Kazemzadeh-Parsi, Mohammad Javad
    Daneshmand, Farhang
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2009, 45 (10) : 599 - 611
  • [37] A meshless method coupling peridynamics with corrective smoothed particle method for predicting material failure
    Qin, Mingqi
    Yang, Diansen
    Jia, Yun
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 147 : 125 - 137
  • [38] RESOLVING POWER OF THE ITERATION METHOD OF SOLVING INVERSE HEAT-CONDUCTION BOUNDARY-VALUE PROBLEMS.
    Balakovskii, S.L.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1987, 52 (06): : 713 - 717
  • [39] A Meshless Boundary Element Method Formulation for Transient Heat Conduction Problems with Heat Sources
    Hematiyan, M. R.
    Karami, G.
    SCIENTIA IRANICA, 2008, 15 (03) : 348 - 359
  • [40] A BOUNDARY RESIDUAL METHOD WITH HEAT POLYNOMIALS FOR SOLVING UNSTEADY HEAT-CONDUCTION PROBLEMS
    YANO, H
    FUKUTANI, S
    KIEDA, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1983, 316 (04): : 291 - 298