Multidomain finite elements for advection-diffusion equations

被引:0
|
作者
Universita degli Studi di Trento, Trento, Italy [1 ]
机构
来源
Appl Numer Math | / 1卷 / 91-118期
关键词
The application of domain decomposition methods to this family of partial differential equations; shows various interesting aspects. Such methods allow a simplification of the geometry and a reduction of the size of the problems; and the use of different physical models and numerical methods on different subdomains. Furthermore domain decomposition methods are easily parallelizable and allow * This research was carried out while the author was visiting the Group of Applied Mathematics and Simulation of CRS4; and was supported by Sardinian Regional Authorities;
D O I
暂无
中图分类号
学科分类号
摘要
17
引用
收藏
相关论文
共 50 条
  • [41] Moments for Tempered Fractional Advection-Diffusion Equations
    Yong Zhang
    Journal of Statistical Physics, 2010, 139 : 915 - 939
  • [42] Lie group solutions of advection-diffusion equations
    Sun, Yubiao
    Jayaraman, Amitesh
    Chirikjian, Gregory S.
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [43] Computational technique for heat and advection-diffusion equations
    Jena, Saumya Ranjan
    Gebremedhin, Guesh Simretab
    SOFT COMPUTING, 2021, 25 (16) : 11139 - 11150
  • [44] Adaptive domain decomposition algorithms and finite volume/finite element approximation for advection-diffusion equations
    CRS4, Cagliari, Italy
    J Sci Comput, 4 (299-341):
  • [45] Biological modeling with nonlocal advection-diffusion equations
    Painter, Kevin J.
    Hillen, Thomas
    Potts, Jonathan R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01): : 57 - 107
  • [46] Moments for Tempered Fractional Advection-Diffusion Equations
    Zhang, Yong
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) : 915 - 939
  • [47] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347
  • [48] Some Stability Results for Advection-Diffusion Equations
    Howes, F.A.
    Studies in Applied Mathematics, 1986, 74 (01): : 35 - 53
  • [49] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [50] A Uniformly Optimal-Order Estimate for Finite Volume Method for Advection-Diffusion Equations
    Ren, Yongqiang
    Cheng, Aijie
    Wang, Hong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 17 - 43