Time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- α method

被引:0
|
作者
机构
[1] Chung, J.
[2] Hulbert, G.M.
来源
Chung, J. | 1600年 / 60期
关键词
Structural analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] An Improved Time Integration Method Based on Galerkin Weak Form with Controllable Numerical Dissipation
    Wang, Weixuan
    Xing, Qinyan
    Yang, Qinghao
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 22
  • [22] CONCURRENT MULTIPLE-TIME-SCALE SIMULATIONS WITH IMPROVED NUMERICAL DISSIPATION FOR STRUCTURAL DYNAMICS
    Ruparel, Tejas
    Eskandarian, Azim
    Lee, James
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 9, 2014,
  • [23] An improved explicit time integration method for linear and nonlinear structural dynamics
    Kim, Wooram
    Lee, Jin Ho
    COMPUTERS & STRUCTURES, 2018, 206 : 42 - 53
  • [24] COLLOCATION, DISSIPATION AND OVERSHOOT FOR TIME INTEGRATION SCHEMES IN STRUCTURAL DYNAMICS
    HILBER, HM
    HUGHES, TJR
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1978, 6 (01): : 99 - 117
  • [25] New Explicit Integration Algorithms with Controllable Numerical Dissipation for Structural Dynamics
    Du, Xiaoqiong
    Yang, Dixiong
    Zhou, Jilei
    Yan, Xiaoliang
    Zhao, Yongliang
    Li, Shi
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2018, 18 (03)
  • [26] Regularized numerical integration of multibody dynamics with the generalized α method
    Scientific Computation Laboratory, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, 560012, India
    Appl. Math. Comput., 1600, 3 (1224-1243):
  • [27] Regularized numerical integration of multibody dynamics with the generalized α method
    Parida, Nigam Chandra
    Raha, Soumyendu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1224 - 1243
  • [28] A-stable two-step time integration methods with controllable numerical dissipation for structural dynamics
    Zhang, Jie
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (01) : 54 - 92
  • [29] Convergence of generalized-α time integration for nonlinear systems with stiff potential forces
    Koebis, M. A.
    Arnold, M.
    MULTIBODY SYSTEM DYNAMICS, 2016, 37 (01) : 107 - 125
  • [30] Novel generalized-α methods for interfield parallel integration of heterogeneous structural dynamic systems
    Bursi, O. S.
    He, L.
    Bonelli, A.
    Pegon, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (07) : 2250 - 2258