Improved performance of adaptive optics in the visible

被引:0
|
作者
Glindemann, Andreas [1 ]
机构
[1] Max-Planck-Inst fur Astronomie, Heidelberg, Germany
关键词
Aberrations - Fourier optics - Image processing - Mirrors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper shows that a high-order wave-front sensor can dramatically improve the performance of a rigid-mirror adaptive optics system. This can be achieved by a simple tip-tilt mirror which can increase the peak intensity of the corrected image almost ten times using the basis that remaining effective aberration i.e., the aberration modulo 2π is used for obtaining the best fit to the turbulent wave front, especially for observations in the visible range. For linear fitting to the wave front, the brightest speckle in image space corresponds to the minimum of the effective error sum in Fourier space. Application to improving the performance of telescopes by retrofitting with tip-tilt or tip-tilt and defocus adaptive mirrors is described.
引用
收藏
页码:1370 / 1375
相关论文
共 50 条
  • [31] Infinite impulse response modal filtering in visible adaptive optics
    Agapito, G.
    Arcidiacono, C.
    Quiros-Pacheco, F.
    Puglisi, A.
    Esposito, S.
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [32] High Performance Silicon Flat Optics at Visible Wavelengths
    Burguete-Lopez, Arturo
    Makarenko, Maksim
    Getman, Fedor
    Fratalocchi, Andrea
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [33] Adaptive optics at short wavelengths Expected performance and sky coverage of the FLAO system going toward visible wavelengths
    Agapito, Guido
    Arcidiacono, Carmelo
    Quiros-Pacheco, F.
    Esposito, Simone
    EXPERIMENTAL ASTRONOMY, 2014, 37 (03) : 503 - 523
  • [34] Membrane deformable mirror for adaptive optics:: performance limits in visual optics
    Fernández, EJ
    Artal, P
    OPTICS EXPRESS, 2003, 11 (09): : 1056 - 1069
  • [35] Beacon-Defined Performance of Adaptive Optics
    Khizhnyak, A.
    Markov, V.
    Chavez, Joseph
    Liu, Shiang
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS, 2012, 8517
  • [36] MAVIS: performance estimation of the adaptive optics module
    Agapito, Guido
    Vassallo, Daniele
    Plantet, Cedric
    Cranney, Jesse
    Hao Zhang
    Viotto, Valentina
    Pinnaa, Enrico
    Rigaut, Francois
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [37] Adaptive optics performance model for optical interferometry
    Mozurkewich, D
    Restaino, SR
    Gilbreath, GC
    NEW FRONTIERS IN STELLAR INTERFEROMETRY, PTS 1-3, 2004, 5491 : 1113 - 1119
  • [38] SPHERE adaptive optics performance for faint targets
    Jones, M. I.
    Milli, J.
    Blanchard, I.
    Wahhaj, Z.
    De Rosa, R. J.
    Romero, C.
    Ihanec, N.
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [39] Performance of Subaru Cassegrain Adaptive Optics system
    Takami, H
    Takato, N
    Hayano, Y
    Iye, M
    Oya, S
    Kamata, Y
    Kanzawa, T
    Minowa, Y
    Otsubo, M
    Nakashima, K
    Gaessler, W
    Saint-Jacques, D
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2004, 56 (01) : 225 - 234
  • [40] Ground layer adaptive optics performance in Antarctica
    Travouillon, T
    Lawrence, JS
    Jolissaint, L
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 934 - 942