Practical uses of the minimum description length principle in inductive learning

被引:0
|
作者
机构
来源
| 1995年 / Austrian Soc for Artificial Intelligence, Vienna, Austria卷 / 13期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3 / 4
相关论文
共 50 条
  • [41] Clustgrams: an extension to histogram densities based on the minimum description length principle
    Luosto, Panu
    Kontkanen, Petri
    OPEN COMPUTER SCIENCE, 2011, 1 (04) : 466 - 481
  • [42] Spatially adaptive wavelet denoising using the minimum description length principle
    Xie, JC
    Zhang, DL
    Xu, WL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (02) : 179 - 187
  • [43] Gaussian Clusters and Noise: An Approach Based on the Minimum Description Length Principle
    Luosto, Panu
    Kivinen, Jyrki
    Mannila, Heikki
    DISCOVERY SCIENCE, DS 2010, 2010, 6332 : 251 - 265
  • [44] Determining Principal Component Cardinality Through the Principle of Minimum Description Length
    Tavory, Ami
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, 2019, 11943 : 655 - 666
  • [45] The Whole and the Parts: The Minimum Description Length Principle and the A-Contrario Framework
    von Gioi, Rafael Grompone
    Paulino, Ignacio Ramirez
    Randall, Gregory
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (03): : 1282 - 1313
  • [46] Minimum description length principle in the field of image analysis and pattern recognition
    Potapov A.S.
    Pattern Recognition and Image Analysis, 2011, 21 (02) : 156 - 159
  • [47] VIBR: Visualizing Bipartite Relations at Scale with the Minimum Description Length Principle
    Chan, Gromit Yeuk-Yin
    Xu, Panpan
    Dai, Zeng
    Ren, Liu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) : 321 - 330
  • [48] Principle of minimum description length as a method of improving discriminant methods of recognition
    Potapov, A. S.
    Malyshev, I. A.
    Lutsiv, V. R.
    JOURNAL OF OPTICAL TECHNOLOGY, 2006, 73 (10) : 693 - 697
  • [49] Minimum description length model selection in associative learning
    Gallistel, C. Randy
    Wilkes, Jason T.
    CURRENT OPINION IN BEHAVIORAL SCIENCES, 2016, 11 : 8 - 13
  • [50] Minimum Description Length and Generalization Guarantees for Representation Learning
    Sefidgaran, Milad
    Zaidi, Abdellatif
    Krasnowski, Piotr
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,