Nonlinear perturbations with a self-induced pressure gradient in a boundary layer on a plate in transonic flow

被引:0
|
作者
Zhuk, V.I.
机构
来源
Prikladnaya Matematika i Mekhanika | 1993年 / 57卷 / 05期
关键词
Boundary layer flow - Boundary layers - Fluids - Integrodifferential equations - Pressure - Transonic flow;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The evolution of nonstationary nonlinear perturbations in a laminar boundary layer on a plate exposed to transonic external flow is investigated. Studying the two-dimensional field of velocities reduces to solving an integral-differential equation for a function dependent on time and on a single spatial coordinate. The theory developed implements continuous transfer from sub- to supersonic flow-around, since the above mentioned governing equation incorporates as its extreme cases the Burgers and Benjamin-Ono equations which describe the evolution of perturbations beyond the transonic interval.
引用
收藏
页码:68 / 78
相关论文
共 50 条
  • [31] Bifurcation Corresponding to the Onset of Asymmetric Periodic Structures and a Self-Induced Pressure Gradient in a Modified Taylor Flow
    S. M. Drozdov
    Fluid Dynamics, 2004, 39 : 393 - 405
  • [32] Development of artificial perturbations in boundary layer on plate and in the plate wake at supersonic speed of the incoming flow
    Ermolaev, Yu.G.
    Lysenko, V.I.
    2002, Nauka, Moscow
  • [33] Homotopy Perturbation Method for MHD Boundary Layer Flow with Low Pressure Gradient over a Flat Plate
    Jhankal, A. K.
    JOURNAL OF APPLIED FLUID MECHANICS, 2014, 7 (01) : 177 - 185
  • [34] The simulation of unsteady transonic flow and the stability of a transonic boundary layer
    Bogdanov, A.N.
    Diyesperov, V.N.
    Journal of Applied Mathematics and Mechanics, 2005, 69 (03): : 358 - 365
  • [35] Bypass Boundary Layer Transition on Flat Plate by Adverse Pressure Gradient
    Skala, Vladislav
    Uruba, Vaclav
    Antos, Pavel
    Jonas, Pavel
    EXPERIMENTAL FLUID MECHANICS 2018 (EFM18), 2019, 213
  • [36] On the structure of the boundary layer under adverse pressure gradient on an inclined plate
    Uruba, V.
    Prochazka, P.
    Skala, V.
    XXIII FLUID MECHANICS CONFERENCE (KKMP 2018), 2018, 1101
  • [38] Self-Induced Suction of Fluid in a Turbulent Boundary Layer on a Permeable Surface
    Gorbushin, A. R.
    Zametaev, V. B.
    Lipatov, I. I.
    Fedotov, M. A.
    Khokhlov, A. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (10) : 1691 - 1706
  • [39] The simulation of unsteady transonic flow and the stability of a transonic boundary layer
    Bogdanov, AN
    Diyesperov, VN
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2005, 69 (03): : 358 - 365
  • [40] Laminar subsonic, supersonic, and transonic boundary-layer flow past a flat plate
    Otta, SP
    Rothmayer, AP
    AIAA JOURNAL, 2006, 44 (01) : 102 - 107