Maximum entropy principle and the logistic model

被引:0
|
作者
Leblanc, Raymond
Shapiro, Stanley
机构
[1] Dept. de Mathematiques et d'Info., UQTR, C.P. 500, Trois-Rivières, Que. G9A 5H7, Canada
[2] Dept. of Epidemiol. and Biostatist., McGill University, 1020 Pine Avenue West, Montreal, Que. H3A 1A2, Canada
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:51 / 62
相关论文
共 50 条
  • [31] Numerical taxonomy and the principle of maximum entropy
    Gyllenberg, M
    Koski, T
    JOURNAL OF CLASSIFICATION, 1996, 13 (02) : 213 - 229
  • [32] Statistics and quantum maximum entropy principle
    Trovato, M.
    Reggiani, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01): : 247 - 255
  • [33] THE GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    KESAVAN, HK
    KAPUR, JN
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1042 - 1052
  • [34] Maximum Renyi entropy principle and the generalized Thomas-Fermi model
    Nagy, A.
    Romera, E.
    PHYSICS LETTERS A, 2009, 373 (8-9) : 844 - 846
  • [35] ANALYSIS OF MAXIMUM ENTROPY PRINCIPLE DEBATE
    CYRANSKI, JF
    FOUNDATIONS OF PHYSICS, 1978, 8 (5-6) : 493 - 506
  • [36] Research on Principle and Application of Maximum Entropy
    Wu, Boya
    Yi, Junyan
    Yong, Qiaoling
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2571 - 2576
  • [37] The maximum entropy principle and algorithmic randomness
    Maslov, VP
    V'yugin, VV
    DOKLADY MATHEMATICS, 2004, 70 (02) : 682 - 685
  • [38] Hydrodynamical model of charge transport in GaAs hased on the maximum entropy principle
    Mascali, G
    Romano, V
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2002, 14 (05) : 405 - 423
  • [39] Probability distributions and the maximum entropy principle
    Villa-Morales, Jose
    Rincon, Luis
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 444
  • [40] Maximum Entropy Principle for Uncertain Variables
    Chen, Xiaowei
    Dai, Wei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2011, 13 (03) : 232 - 236