Dynamical critical exponent of the one-dimensional random transverse-Ising model

被引:0
|
作者
Univ of Tokyo, Tokyo, Japan [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
20
引用
收藏
页码:39 / 59
相关论文
共 50 条
  • [21] Reduced Fidelity Susceptibility in One-Dimensional Transverse Field Ising Model
    马健
    徐磊
    王晓光
    CommunicationsinTheoreticalPhysics, 2010, 53 (01) : 175 - 179
  • [22] Quantum quench dynamics of the one-dimensional Ising model in transverse field
    Wei-Ke Zou
    Nuo-Wei Li
    Chong Han
    Dong-dong Liu
    Pramana, 2019, 92
  • [23] Quantum quench dynamics of the one-dimensional Ising model in transverse field
    Zou, Wei-Ke
    Li, Nuo-Wei
    Han, Chong
    Liu, Dong-Dong
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [24] Reduced Fidelity Susceptibility in One-Dimensional Transverse Field Ising Model
    Ma Jian
    Xu Lei
    Wang Xiao-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) : 175 - 179
  • [25] Simulating an exact one-dimensional transverse Ising model in an optical lattice
    Liao, Ren
    Xiong, Fangyu
    Chen, Xuzong
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [26] Quantum spinon oscillations in a finite one-dimensional transverse Ising model
    Cai, Zi
    Wang, Lei
    Xie, X. C.
    Schollwoeck, U.
    Wang, X. R.
    Di Ventra, M.
    Wang, Yupeng
    PHYSICAL REVIEW B, 2011, 83 (15):
  • [27] Quantum-coherence-assisted dynamical phase transition in the one-dimensional transverse-field Ising model
    徐宝明
    Communications in Theoretical Physics, 2024, 76 (12) : 75 - 84
  • [28] Quantum-coherence-assisted dynamical phase transition in the one-dimensional transverse-field Ising model
    Xu, Bao-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (12)
  • [29] Dynamical phase transition of a one-dimensional kinetic Ising model with boundaries
    Khorrami, M
    Aghamohammadi, A
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [30] One-dimensional heat conductivity exponent from a random collision model
    Deutsch, JM
    Narayan, O
    PHYSICAL REVIEW E, 2003, 68 (01): : 102011 - 102013