From discrete to continuous Painleve equations: a bilinear approach

被引:0
|
作者
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] From discrete to continuous Painleve equations: A bilinear approach
    Ohta, Y
    Ramani, A
    Grammaticos, B
    Tamizhmani, KM
    PHYSICS LETTERS A, 1996, 216 (06) : 255 - 261
  • [2] A bilinear approach to the discrete Painleve I equations
    Grammaticos, B
    Tamizhmani, T
    Ramani, A
    Carstea, AS
    Tamizhmani, KM
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (02) : 443 - 447
  • [3] BILINEAR DISCRETE PAINLEVE EQUATIONS
    RAMANI, A
    GRAMMATICOS, B
    SATSUMA, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16): : 4655 - 4665
  • [4] Painleve equations : from continuous to discrete
    Tamizhmani, K. M.
    Ramani, A.
    Grammaticos, B.
    Tamizhmani, T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2008, 78A : 85 - 104
  • [5] FROM CONTINUOUS TO DISCRETE PAINLEVE EQUATIONS
    FOKAS, AS
    GRAMMATICOS, B
    RAMANI, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) : 342 - 360
  • [6] From the continuous Pv to discrete Painleve equations
    Tokihiro, T
    Grammaticos, B
    Ramani, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (28): : 5943 - 5950
  • [7] Quantum Painleve Equations: from Continuous to Discrete
    Nagoya, Hajime
    Grammaticos, Basil
    Ramani, Alfred
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [8] Quantum Painleve Equations: from Continuous to Discrete and Back
    Nagoya, H.
    Grammaticos, B.
    Ramani, A.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (05): : 417 - 423
  • [9] Continuous, Discrete and Ultradiscrete Painleve Equations
    Nakazono, Nobutaka
    Shi, Yang
    Kanki, Masataka
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 1 - 41
  • [10] A SEARCH FOR INTEGRABLE BILINEAR EQUATIONS - THE PAINLEVE APPROACH
    GRAMMATICOS, B
    RAMANI, A
    HIETARINTA, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) : 2572 - 2578