BILINEAR DISCRETE PAINLEVE EQUATIONS

被引:43
|
作者
RAMANI, A
GRAMMATICOS, B
SATSUMA, J
机构
[1] UNIV PARIS 07,LPN,F-75251 PARIS,FRANCE
[2] UNIV TOKYO,DEPT MATH SCI,MEGURO KU,TOKYO 153,JAPAN
来源
关键词
D O I
10.1088/0305-4470/28/16/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the results of singularity confinement we derive bilinear expressions for the discrete Painleve equations. In these cases where a bilinear expression is not sufficient we obtain trilinear or higher multilinear expressions. We show that the bilinear approach provides a natural framework for the derivation of Backlund and Schlesinger transforms for the discrete Painleve equations.
引用
收藏
页码:4655 / 4665
页数:11
相关论文
共 50 条
  • [1] A bilinear approach to the discrete Painleve I equations
    Grammaticos, B
    Tamizhmani, T
    Ramani, A
    Carstea, AS
    Tamizhmani, KM
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (02) : 443 - 447
  • [2] From discrete to continuous Painleve equations: A bilinear approach
    Ohta, Y
    Ramani, A
    Grammaticos, B
    Tamizhmani, KM
    PHYSICS LETTERS A, 1996, 216 (06) : 255 - 261
  • [3] From discrete to continuous Painleve equations: a bilinear approach
    Phys Lett Sect A Gen At Solid State Phys, 6 (255):
  • [4] Bilinear equations and q-discrete Painleve equations satisfied by variables and coefficients in cluster algebras
    Okubo, Naoto
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (35)
  • [5] Similarity reductions of Hirota bilinear equations and Painleve equations
    Tamizhmani, K. M.
    Grammaticos, B.
    Ramani, A.
    Ohta, Y.
    Tamizhmani, T.
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 313 - +
  • [6] Bilinear avatars of the discrete Painleve II equation
    Grammaticos, B.
    Ramani, A.
    Carstea, A. S.
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 85 - +
  • [7] A SEARCH FOR INTEGRABLE BILINEAR EQUATIONS - THE PAINLEVE APPROACH
    GRAMMATICOS, B
    RAMANI, A
    HIETARINTA, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) : 2572 - 2578
  • [8] Bilinear approach to delay-Painleve equations
    Carstea, A. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (10)
  • [9] THE HUNTING FOR THE DISCRETE PAINLEVE EQUATIONS
    Grammaticos, B.
    Ramani, A.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (01): : 53 - 66
  • [10] Elliptic discrete Painleve equations
    Ohta, Y
    Ramani, A
    Grammaticos, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (45): : L653 - L659