Building Error-Correcting-Codes from T-Designs and Graphs.

被引:0
|
作者
Basart I Munoz, J.M. [1 ]
机构
[1] Univ Autonoma de Barcelona, Spain, Univ Autonoma de Barcelona, Spain
来源
Questiio | 1986年 / 10卷 / 02期
关键词
MATHEMATICAL TECHNIQUES - Graph Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present some combinatoric relations between two kinds of incidence structures like symmetric graphs and t-designs, and an algebraic structure as error-correcting-codes. Our goal is - using some fundamental properties of t-designs and graphs - to set some transformation to obtain or characterize families of codes. In the case of t-design we are interested in the quasisymmetric one, and in the case of the graph in the strongly-regular one.
引用
收藏
页码:93 / 97
相关论文
共 50 条
  • [31] Combinatorial t-designs from quadratic functions
    Xiang, Can
    Ling, Xin
    Wang, Qi
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (03) : 553 - 565
  • [32] Large sets of t-designs from groups
    Magliveras, Spyros S.
    MATHEMATICA SLOVACA, 2009, 59 (01) : 19 - 38
  • [33] Combinatorial t-designs from quadratic functions
    Can Xiang
    Xin Ling
    Qi Wang
    Designs, Codes and Cryptography, 2020, 88 : 553 - 565
  • [34] On Unitary t-Designs from Relaxed Seeds
    Mezher, Rawad
    Ghalbouni, Joe
    Dgheim, Joseph
    Markham, Damian
    ENTROPY, 2020, 22 (01) : 92
  • [35] Combinatorial t-designs from special functions
    Cunsheng Ding
    Chunming Tang
    Cryptography and Communications, 2020, 12 : 1011 - 1033
  • [36] ON BOUND USEFUL IN THEORY OF FACTORIAL-DESIGNS + ERROR CORRECTING CODES
    BOSE, RC
    SRIVASTAVA, JN
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 408 - &
  • [37] Error correcting codes, block designs, perfect secrecy and finite fields
    Bruen, Aiden A.
    Wehlau, David L.
    Forcinito, Mario
    ACTA APPLICANDAE MATHEMATICAE, 2006, 93 (1-3) : 253 - 278
  • [38] Error Correcting Codes, Block Designs, Perfect Secrecy and Finite Fields
    Aiden A. Bruen
    David L. Wehlau
    Mario Forcinito
    Acta Applicandae Mathematica, 2006, 93 : 253 - 278
  • [39] ON THE NUMBER OF t-LEE-ERROR-CORRECTING CODES
    Willenborg, Nadja
    Horlemann, Anna-Lena
    Weger, Violetta
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (02) : 567 - 594
  • [40] Hypercubic 4 and 5-designs from double-error-correcting BCH codes
    Helleseth, T
    Klove, T
    Levenshtein, VI
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 28 (03) : 265 - 282