Bi-Hamiltonian separable chains on Riemannian manifolds

被引:0
|
作者
Physics Department, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] QUANTIZATION OF BI-HAMILTONIAN SYSTEMS
    KAUP, DJ
    OLVER, PJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 113 - 117
  • [22] ON THE BI-HAMILTONIAN STRUCTURES OF THE SKDV
    BARCELOSNETO, J
    DAS, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2743 - 2748
  • [23] A bi-Hamiltonian system on the Grassmannian
    F. Bonechi
    J. Qiu
    M. Tarlini
    Theoretical and Mathematical Physics, 2016, 189 : 1401 - 1410
  • [24] Equivalence problem for compatible bi-Hamiltonian structures on three-dimensional orientable manifolds
    Bayrakdar, Tuna
    Ergin, Abdullah Aziz
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2452 - 2465
  • [25] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [26] BI-HAMILTONIAN SYSTEMS AND MASLOV INDEXES
    SCHERER, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3746 - 3756
  • [27] The bi-Hamiltonian structure of the Lagrange top
    Medan, C
    PHYSICS LETTERS A, 1996, 215 (3-4) : 176 - 180
  • [28] Boussinesq hierarchy and bi-Hamiltonian geometry
    Ortenzi, Giovanni
    Pedroni, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [29] Bi-Hamiltonian formalism: A constructive approach
    Smirnov, RG
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (04) : 333 - 347
  • [30] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163