首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Bi-Hamiltonian separable chains on Riemannian manifolds
被引:0
|
作者
:
Physics Department, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
论文数:
0
引用数:
0
h-index:
0
Physics Department, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
[
1
]
机构
:
来源
:
Phys Lett Sect A Gen At Solid State Phys
|
/ 1-2卷
/ 25-32期
关键词
:
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
引用
收藏
相关论文
共 50 条
[1]
Bi-Hamiltonian separable chains on Riemannian manifolds
Blaszak, M
论文数:
0
引用数:
0
h-index:
0
机构:
Adam Mickiewicz Univ, Dept Phys, PL-61614 Poznan, Poland
Adam Mickiewicz Univ, Dept Phys, PL-61614 Poznan, Poland
Blaszak, M
PHYSICS LETTERS A,
1998,
243
(1-2)
: 25
-
32
[2]
Inverse bi-Hamiltonian separable chains
M. Błaszak
论文数:
0
引用数:
0
h-index:
0
机构:
A. Mickiewicz University,Physics Department
M. Błaszak
Theoretical and Mathematical Physics,
2000,
122
: 140
-
150
[3]
Inverse bi-Hamiltonian separable chains
Blaszak, M
论文数:
0
引用数:
0
h-index:
0
机构:
Adam Mickiewicz Univ, Dept Phys, Poznan, Poland
Adam Mickiewicz Univ, Dept Phys, Poznan, Poland
Blaszak, M
THEORETICAL AND MATHEMATICAL PHYSICS,
2000,
122
(02)
: 140
-
150
[4]
Presymplectic representation of bi-Hamiltonian chains
Blaszak, M
论文数:
0
引用数:
0
h-index:
0
机构:
Adam Mickiewicz Univ, Inst Phys, PL-61614 Poznan, Poland
Adam Mickiewicz Univ, Inst Phys, PL-61614 Poznan, Poland
Blaszak, M
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL,
2004,
37
(50):
: 11971
-
11988
[5]
Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
Tondo, G
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
Tondo, G
Morosi, C
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
Morosi, C
REPORTS ON MATHEMATICAL PHYSICS,
1999,
44
(1-2)
: 255
-
266
[6]
Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures
Strachan, IAB
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
Strachan, IAB
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS,
2004,
20
(01)
: 67
-
99
[7]
ON BI-HAMILTONIAN STRUCTURES
FRAUENDIENER, J
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh
FRAUENDIENER, J
NEWMAN, ET
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh
NEWMAN, ET
JOURNAL OF MATHEMATICAL PHYSICS,
1990,
31
(02)
: 331
-
337
[8]
BI-HAMILTONIAN FLOWS AND THEIR REALIZATIONS AS CURVES IN REAL SEMISIMPLE HOMOGENEOUS MANIFOLDS
Beffa, Gloria Mari
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Beffa, Gloria Mari
PACIFIC JOURNAL OF MATHEMATICS,
2010,
247
(01)
: 163
-
188
[9]
Degenerate Frobenius manifolds and the bi-Hamiltonian structure of rational Lax equations
Strachan, IAB
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
Strachan, IAB
JOURNAL OF MATHEMATICAL PHYSICS,
1999,
40
(10)
: 5058
-
5079
[10]
Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature
Mokhov, OI
论文数:
0
引用数:
0
h-index:
0
机构:
Russian Acad Sci, Ctr Nonlinear Studies, Landau Inst Theoret Phys, Moscow 117901, Russia
Russian Acad Sci, Ctr Nonlinear Studies, Landau Inst Theoret Phys, Moscow 117901, Russia
Mokhov, OI
RUSSIAN MATHEMATICAL SURVEYS,
2002,
57
(05)
: 999
-
1001
←
1
2
3
4
5
→