Algebraic dynamical approach to the su(1,1)⊕h(3) dynamical system: A generalized harmonic oscillator in an external field

被引:0
|
作者
Academia Sinica, Lanzhou, China [1 ]
机构
来源
J Phys I | / 6卷 / 749-758期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
26
引用
收藏
相关论文
共 50 条
  • [11] The su(1,1) Dynamical Algebra for the Generalized MICZ-Kepler Problem from the Schrodinger Factorization
    Salazar-Ramirez, M.
    Martinez, D.
    Granados, V. D.
    Mota, R. D.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (05) : 967 - 973
  • [12] Dynamics of SU(1,1) coherent states for the damped harmonic oscillator
    Choi, Jeong Ryeol
    Yeon, Kyu Hwang
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [13] Optimal control of quantum systems with SU(1,1)dynamical symmetry
    Wenbin DONG
    Rebing WU
    Jianwu WU
    Chunwen LI
    Tzyh-Jong TARN
    Control Theory and Technology, 2015, 13 (03) : 211 - 220
  • [14] An su(1,1) dynamical algebra for the Poschl-Teller potential
    Arias, JM
    Gómez-Camacho, J
    Lemus, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (03): : 877 - 893
  • [15] PATH INTEGRAL FOR COHERENT STATES OF THE DYNAMICAL GROUP SU(1,1)
    GERRY, CC
    SILVERMAN, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (11) : 1995 - 2003
  • [16] SU(2)/U(1) DYNAMICAL SYSTEM
    AHMED, E
    ELMISIERY, AEM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (08) : 1681 - 1686
  • [17] The su(1,1) dynamical algebra from the Schrodinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator
    Martinez, D.
    Flores-Urbina, J. C.
    Mota, R. D.
    Granados, V. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (13)
  • [18] The su(1,1) Dynamical Algebra for the Generalized MICZ-Kepler Problem from the Schrödinger Factorization
    M. Salazar-Ramírez
    D. Martínez
    V. D. Granados
    R. D. Mota
    International Journal of Theoretical Physics, 2010, 49 : 967 - 973
  • [19] Regular phase operator and SU(1,1) coherent states of the harmonic oscillator
    Varro, Sandor
    PHYSICA SCRIPTA, 2015, 90 (07)
  • [20] The controllability of the pure states for the Morse potential with a dynamical group SU(1,1)
    Dong, SH
    Lara-Rosano, F
    Sun, GH
    PHYSICS LETTERS A, 2004, 325 (3-4) : 218 - 225