The exponential map of GL(N)

被引:0
|
作者
Laufer, A.
机构
来源
| 1997年 / 30期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] The exponential map of GL(N)
    Laufer, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15): : 5455 - 5470
  • [2] On splitting of the canonical map:: mod(p):GL(n, (p))→GL(n, p)
    Ginosar, Y
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (12) : 5879 - 5881
  • [3] Exponential sums for GL(n) and their applications to base change
    Ye, YB
    JOURNAL OF NUMBER THEORY, 1998, 68 (01) : 112 - 130
  • [4] The exponential map for representations of U-p,U-q(gl(2))
    VanderJeugt, J
    Jagannathan, R
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 (2-3) : 269 - 275
  • [5] SOME REMARKS ON THE EXPONENTIAL MAP ON THE GROUPS SO(n) AND SE(n)
    Rohan, Ramona-Andreea
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2013, : 160 - 175
  • [6] ON EXPONENTIAL MAP
    CHERRIER, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (19): : 1163 - 1166
  • [7] GL(n, C)∧ and GL(n, R)∧
    Tadic, Marko
    AUTOMORPHIC FORMS AND L-FUNCTIONS II. LOCAL ASPECTS, 2009, 489 : 285 - 313
  • [8] Rankin-Selberg convolutions for GL(n)×GL(n) and GL(n)×GL(n−1) for principal series representations
    Jian-Shu Li
    Dongwen Liu
    Feng Su
    Binyong Sun
    Science China Mathematics, 2023, 66 : 2203 - 2218
  • [9] Rankin-Selberg convolutions for GL(n)×GL(n) and GL(n)×GL(n-1) for principal series representations
    Jian-Shu Li
    Dongwen Liu
    Feng Su
    Binyong Sun
    Science China(Mathematics), 2023, 66 (10) : 2203 - 2218
  • [10] Derivatives for smooth representations of GL(n, ℝ) and GL(n, ℂ)
    Avraham Aizenbud
    Dmitry Gourevitch
    Siddhartha Sahi
    Israel Journal of Mathematics, 2015, 206 : 1 - 38