REGULARIZATION BY LOWERING AND RAISING ITS ACCURACY IN THE SOLUTION OF INVERSE PROBLEMS OF HEAT CONDUCTION.

被引:0
|
作者
Matsevityi, Yu.M. [1 ]
机构
[1] Acad of Sciences of the Ukrainian, SSR, Kharkov, USSR, Acad of Sciences of the Ukrainian SSR, Kharkov, USSR
关键词
MATHEMATICAL TECHNIQUES - Numerical Methods;
D O I
暂无
中图分类号
学科分类号
摘要
The question of the a priori restriction of computational accuracy in order to obtain stable solutions of inverse problems by the methods of high-precision regularization is posed.
引用
收藏
页码:1095 / 1097
相关论文
共 50 条
  • [21] ANALYTIC SOLUTION TO INVERSE HEAT-CONDUCTION PROBLEMS WITH PERIODICITY
    FRANCE, DM
    CHIANG, T
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1980, 102 (03): : 579 - 581
  • [22] Parallel genetic algorithms for the solution of inverse heat conduction problems
    Guo, Q.
    Shen, D.
    Guo, Y.
    Lai, C.-H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (02) : 241 - 249
  • [23] ITERATIVE APPROACH TO SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS
    ARLEDGE, RG
    HAJISHEIKH, A
    MECHANICAL ENGINEERING, 1978, 100 (05) : 95 - 96
  • [24] Design, formulation, and solution of multidimensional inverse heat conduction problems
    Lüttich, T
    Mhamdi, A
    Marquardt, W
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2005, 47 (02) : 111 - 133
  • [25] A generalized coordinates approach for the solution of inverse heat conduction problems
    Alencar, JP
    Orlande, HRB
    Ozisik, MN
    HEAT TRANSFER 1998, VOL 7: GENERAL PAPERS, 1998, : 53 - 58
  • [26] GENETIC ALGORITHM IN SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS
    RAUDENSKY, M
    WOODBURY, KA
    KRAL, J
    BREZINA, T
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1995, 28 (03) : 293 - 306
  • [27] Solution of multi-parameter inverse problems of heat conduction
    Matsevityi, Yu.M.
    Multanovskii, A.V.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1991, 60 (01): : 117 - 124
  • [28] QUESTION OF CONSTRUCTING TIKHONOV REGULARIZING ALGORITHMS FOR NON-ONE-DIMENSIONAL INVERSE PROBLEMS OF HEAT CONDUCTION.
    Glasko, V.B.
    Kondorskaya, E.E.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1982, 43 (04): : 1139 - 1144
  • [29] OPTIMIZATION OF REGULARIZATION IN INVERSE HEAT CONDUCTION ANALYSIS
    Woodbury, Keith A.
    Najafi, Hamid
    de Monte, Filippo
    8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 479 - 489
  • [30] Wavelet regularization for an inverse heat conduction problem
    Fu, CL
    Zhu, YB
    Qiu, CY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) : 212 - 222