Lie Groups of Conformal Motions acting on Null Orbits

被引:0
|
作者
Sintes, A. M.
Coley, A. A.
Carot, J.
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] NILPOTENT LIE GROUPS ACTING ON SURFACES
    DIAZMIRANDA, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1978, 102 (02): : 155 - 165
  • [12] SOLVABLE LIE GROUPS ACTING ON NILMANIFOLDS
    AUSLANDER, L
    AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (03) : 653 - 660
  • [13] Compact Lie groups acting on pseudomanifolds
    Popper, R
    ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (01) : 1 - 19
  • [14] ADMISSIBLE COADJOINT ORBITS FOR COMPACT LIE GROUPS
    Paradan, P-E
    Vergne, M.
    TRANSFORMATION GROUPS, 2018, 23 (03) : 875 - 892
  • [15] ADMISSIBLE COADJOINT ORBITS FOR COMPACT LIE GROUPS
    P.-E. PARADAN
    M. VERGNE
    Transformation Groups, 2018, 23 : 875 - 892
  • [16] Polynomially convex orbits of compact lie groups
    V. M. Gichev
    I. A. Latypov
    Transformation Groups, 2001, 6 : 321 - 331
  • [17] REGULARITY OF ORBITS SPACE ON SEMISIMPLE LIE GROUPS
    TATSUUMA, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (02): : 84 - &
  • [18] Polynomially convex orbits of compact Lie groups
    Gichev, VM
    Latypov, IA
    TRANSFORMATION GROUPS, 2001, 6 (04) : 321 - 331
  • [19] APPROXIMATION OF NILPOTENT ORBITS FOR SIMPLE LIE GROUPS
    Fresse, Lucas
    Mehdi, Salah
    GLASNIK MATEMATICKI, 2021, 56 (02) : 287 - 327
  • [20] Wreath products of groups acting with bounded orbits
    Leemann, Paul-Henry
    Schneeberger, Gregoire
    ENSEIGNEMENT MATHEMATIQUE, 2024, 70 (1-2): : 121 - 149