Using hierarchical self-assembly to form three-dimensional lattices of spheres

被引:0
|
作者
机构
[1] Wu, Hongkai
[2] Thalladi, Venkat R.
[3] Whitesides, Sue
[4] Whitesides, George M.
来源
Whitesides, G.M. (gwhitesides@gmwgroup.harvard.edu) | 1600年 / American Chemical Society卷 / 124期
关键词
Capillarity; -; Dissolution; Solutions; Structure; (composition); Synthesis; (chemical);
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes an approach to the fabrication of three-dimensional (3-D) structures of millimeter-scale spherical beads having a range of lattices - tetragonal, cubic, and hexagonal - using hierarchical self-assembly. The process has five steps: (i) metal-coated beads are packed in a rod-shaped cavity in an elastomeric polymer (poly(dimethylsiloxane), PDMS); (ii) the beads are embedded in a second polymer (PDMS or polyurethane, PU) using a procedure that leaves the parts of the beads in contact with the PDMS exposed; (iii) the exposed areas of the beads are coated with a solder having a low melting point; (iv) the polymer rods - with embedded beads and exposed solder drops - are suspended in an approximately isodense medium (an aqueous solution of KBr) and allowed to self-assemble by capillary interactions between the drops of molten solder; and (v) the assembly is finished by several procedures, including removing the beads from the polymer matrix by dissolution, filling the voids left with another material, and dissolving the matrix. The confinement of the beads in regular structures in polymer rods makes it possible to generate self-assembled structures with a variety of 3-D lattices; the type of the lattice formed can be controlled by varying the size of the beads, and the size and shape of the cross-section of the rods.
引用
收藏
相关论文
共 50 条
  • [41] Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water
    Taylor, Lauren L. K.
    Riddell, Imogen A.
    Smulders, Maarten M. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) : 1280 - 1307
  • [42] Guided three-dimensional molecular self-assembly on silicon substrates
    Chang, Chia-Ching
    Sun, Kien Wen
    Kan, Lou-Sing
    Kuan, Chieh-Hsiung
    APPLIED PHYSICS LETTERS, 2006, 88 (26)
  • [43] An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale
    Blum, AS
    Soto, CM
    Wilson, CD
    Brower, TL
    Pollack, SK
    Schull, TL
    Chatterji, A
    Lin, TW
    Johnson, JE
    Amsinck, C
    Franzon, P
    Shashidhar, R
    Ratna, BR
    SMALL, 2005, 1 (07) : 702 - 706
  • [44] Self-assembly for three-dimensional integration of functional electrical components
    Cannon, AH
    Hua, YM
    Henderson, CL
    King, WP
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (11) : 2172 - 2178
  • [45] Three-dimensional self-assembly of millimetre-scale components
    Andreas Terfort
    Ned Bowden
    George M. Whitesides
    Nature, 1997, 386 : 162 - 164
  • [46] Complex three-dimensional self-assembly in proxies for atmospheric aerosols
    Pfrang, C.
    Rastogi, K.
    Cabrera-Martinez, E. R.
    Seddon, A. M.
    Dicko, C.
    Labrador, A.
    Plivelic, T. S.
    Cowieson, N.
    Squires, A. M.
    NATURE COMMUNICATIONS, 2017, 8
  • [47] Quantification of the forces driving self-assembly of three-dimensional microtissues
    Youssef, Jacquelyn
    Nurse, Asha K.
    Freund, L. B.
    Morgan, Jeffrey R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) : 6993 - 6998
  • [48] In Situ Monitored Self-Assembly of Three-Dimensional Polyhedral Nanostructures
    Dai, Chunhui
    Cho, Jeong-Hyun
    NANO LETTERS, 2016, 16 (06) : 3655 - 3660
  • [49] Fabrication of multicomponent microsystems by directed three-dimensional self-assembly
    Zheng, W
    Jacobs, HO
    ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (05) : 732 - 738
  • [50] Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning
    Sun, Bin
    Long, Yun-Ze
    Yu, Fang
    Li, Meng-Meng
    Zhang, Hong-Di
    Li, Wen-Jing
    Xu, Tian-Xiang
    NANOSCALE, 2012, 4 (06) : 2134 - 2137