BETWEEN FUZZY SET THEORY AND BOOLEAN VALUED SET THEORY.

被引:0
|
作者
Jinwen, Zhang
机构
来源
| 1982年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
页码:143 / 147
相关论文
共 50 条
  • [21] Complexity Assessments for Decidable Fragments of Set Theory. I: A Taxonomy for the Boolean Case
    Cantone, Domenico
    De Domenico, Andrea
    Maugeri, Pietro
    Omodeo, Eugenio G.
    FUNDAMENTA INFORMATICAE, 2021, 181 (01) : 37 - 69
  • [22] A rough set paradigm for unifying rough set theory and fuzzy set theory
    Polkowski, L
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 70 - 77
  • [23] Fuzzy rough set theory for the interval-valued fuzzy information systems
    Sun, Bingzhen
    Gong, Zengtai
    Chen, Degang
    INFORMATION SCIENCES, 2008, 178 (13) : 2794 - 2815
  • [24] Some comments on the principles of the set theory.
    Borel, E
    MATHEMATISCHE ANNALEN, 1905, 60 : 194 - 195
  • [25] Multiple Products and Implications in Interval-Valued Fuzzy Set Theory
    Deschrijver, Glad
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 412 - 419
  • [26] Rough set theory for the incomplete interval valued fuzzy information systems
    Gong, Zengtai
    Tao, Lei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (02) : 889 - 900
  • [27] Generalized arithmetic operations in interval-valued fuzzy set theory
    Deschrijver, G
    Vroman, A
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2005, 16 (04) : 265 - 271
  • [28] Rough set theory for the interval-valued fuzzy information systems
    Gong, Zengtai
    Sun, Bingzhen
    Chen, Degang
    INFORMATION SCIENCES, 2008, 178 (08) : 1968 - 1985
  • [29] On interval-valued fuzzy soft set theory applied to semigroups
    Yiarayong, Pairote
    SOFT COMPUTING, 2020, 24 (05) : 3113 - 3123
  • [30] On interval-valued fuzzy soft set theory applied to semigroups
    Pairote Yiarayong
    Soft Computing, 2020, 24 : 3113 - 3123