SHORT-WAVE ASYMPTOTICS OF NORMAL MODES OF AN IRREGULAR WAVEGUIDE.

被引:0
|
作者
Popov, A.V.
机构
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
WAVEGUIDES
引用
收藏
页码:27 / 32
相关论文
共 50 条
  • [41] Short-wave diffraction of an acoustic field at a rigid scatterer in a waveguide with a rough surface
    Vdovicheva, NK
    Sazontov, AG
    Khil'ko, AI
    ACOUSTICAL PHYSICS, 1998, 44 (04) : 377 - 383
  • [42] Strong confinement of short-wave Brillouin phonons in silicon waveguide periodic lattices
    Zurita, Roberto de Oliveira
    Wiederhecker, Gustavo S.
    Alegre, Thiago P. M.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [43] ACOUSTOOPTIC CONVERSION OF TE AND TM MODES IN A DIFFUSIVE PLANAR WAVEGUIDE.
    Szustakowski, Mieczyslaw
    Swietlicki, Boguslaw
    Archives of Acoustics, 1982, 7 (3-4) : 271 - 279
  • [44] Asymptotics of eigenwaves of a smooth irregular spherical anisotropic waveguide
    Novikov, V.V.
    Solov'ev, YU.N .
    Radiophysics and quantum electronics, 1995, 38 (05): : 299 - 305
  • [45] NONLINEAR GUIDED WAVE IN SYMMETRIC SLAB LEAKY WAVEGUIDE.
    Xue, Bingzhang
    Wang, Qi
    Cai, Yingshi
    Guangxue Xuebao/Acta Optica Sinica, 1988, 8 (02): : 166 - 170
  • [46] On Normal Modes of a Waveguide
    O. K. Kroytor
    M. D. Malykh
    L. A. Sevast’yanov
    Computational Mathematics and Mathematical Physics, 2022, 62 : 393 - 410
  • [47] On Normal Modes of a Waveguide
    Kroytor, O. K.
    Malykh, M. D.
    Sevast'yanov, L. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (03) : 393 - 410
  • [48] EXTENSION TO THE SHORT-WAVE ASYMPTOTICS OF THE TRANSMISSION COEFFICIENT FOR A SEMI-SUBMERGED CIRCULAR CYLINDER.
    Robertson, D.N.
    Journal of Fluid Mechanics, 1986, 166 : 325 - 340
  • [49] Explicit short-wave asymptotics for diffraction by finite-length discontinuities in waveguides: Closed structures
    A. Scalia
    M. A. Sumbatyan
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2001, 52 : 631 - 639
  • [50] Explicit short-wave asymptotics for diffraction by finite-length discontinuities in waveguides: Closed structures
    Scalia, A
    Sumbatyan, MA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (04): : 631 - 639