CC series solution for the bending of rectangular plates on the elastic foundations

被引:0
|
作者
Harbin Shipbuilding Engineering, Harbin, China [1 ]
机构
来源
Appl Math Mech Engl Ed | / 6卷 / 593-601期
关键词
Bending; (deformation);
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The analytical solution for the bending problem of a rectangular plate on an elastic foundation was investigated by using the Stockes' transformation of a double variable function. The numerical results for a rectangular plate of four free edges supported on an elastic foundation with a concentrated force exerting on the center of plate were given as an example to show the use of this method which are in satisfactory agreement with the results of previous works.
引用
收藏
相关论文
共 50 条
  • [31] An approximate finite grid solution for plates on elastic foundations
    Karasin, A. Halim
    Gülkan, Polat
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2008, 19 (03): : 4445 - 4454
  • [32] A finite grid solution for circular plates on elastic foundations
    Karasin, Halim
    Gulkan, Polat
    Aktas, Gultekin
    KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (04) : 1157 - 1163
  • [33] A finite grid solution for circular plates on elastic foundations
    Halim Karaşin
    Polat Gülkan
    Gultekin Aktas
    KSCE Journal of Civil Engineering, 2015, 19 : 1157 - 1163
  • [34] Vibration of initially stressed moderately thick rectangular plates on elastic foundations
    Yang, Jie
    Shen, Hui-Shen
    Shao, Meng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2002, 36 (11): : 1600 - 1604
  • [35] Nonlinear vibration analysis of thin laminated rectangular plates on elastic foundations
    Manoj, T
    Ayyappan, M
    Krishnan, KS
    Rao, NB
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (03): : 183 - 192
  • [36] AN APPROXIMATE SOLUTION FOR THE BENDING VIBRATIONS OF A COMBINATION OF RECTANGULAR THIN PLATES
    SHEN, Y
    GIBBS, BM
    JOURNAL OF SOUND AND VIBRATION, 1986, 105 (01) : 73 - 90
  • [37] Bending of clamped orthotropic rectangular plates: a variational symbolic solution
    Mbakogu, FC
    Pavlovic, MN
    COMPUTERS & STRUCTURES, 2000, 77 (02) : 117 - 128
  • [38] GENERAL ANALYTIC SOLUTION FOR ELASTIC BENDING OF REISSNER PLATES
    孙卫明
    杨光松
    Applied Mathematics and Mechanics(English Edition), 1998, (01) : 85 - 94
  • [39] Solution of bending of elastic plates by means of area potentials
    Chudinovich, I
    Constanda, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (08): : 547 - 553
  • [40] General analytic solution for elastic bending of Reissner plates
    Sun, WM
    Yang, GS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (01) : 85 - 94