The k-Steiner Ratio in the Rectilinear Plane

被引:0
|
作者
Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, United States [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
来源
J Algorithms | / 1卷 / 1-17期
关键词
Number:; CCR-95-30306; Acronym:; -; Sponsor: National Science Foundation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees
    Mohammad Taghi Hajiaghayi
    Guy Kortsarz
    Mohammad R. Salavatipour
    Algorithmica, 2009, 53 : 89 - 103
  • [22] Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing
    Segev, Danny
    Segev, Gil
    ALGORITHMICA, 2010, 56 (04) : 529 - 549
  • [23] RECTILINEAR STEINER PROBLEM
    HWANG, FK
    JOURNAL OF DESIGN AUTOMATION & FAULT-TOLERANT COMPUTING, 1978, 2 (04): : 303 - 310
  • [24] A 2-approximation algorithm and beyond for the minimum diameter k-Steiner forest problem
    Ding, Wei
    Qiu, Ke
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 1 - 15
  • [25] Improved Approximations for Buy-at-Bulk and Shallow-Light k-Steiner Trees and (k, 2)-Subgraph
    Khani, M. Reza
    Salavatipour, Mohammad R.
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 20 - +
  • [26] Balancing Steiner minimum trees and shortest-path trees in the rectilinear plane
    Lin, GH
    Xue, GL
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 6: CIRCUITS ANALYSIS, DESIGN METHODS, AND APPLICATIONS, 1999, : 117 - 120
  • [27] Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation
    Fabián A. Chudak
    Tim Roughgarden
    David P. Williamson
    Mathematical Programming, 2004, 100 : 411 - 421
  • [28] Efficient Rectilinear Steiner Tree construction with Rectilinear Blockages
    Shen, Z
    Chu, CCN
    Li, YM
    2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS & PROCESSORS, PROCEEDINGS, 2005, : 38 - 44
  • [29] Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation
    ETH Zurich, Institut für Operations Research, CLP D 7, Clausiusstrasse 45, 8092 Zürich, Switzerland
    不详
    不详
    Math. Program., 1600, 2 (411-421):
  • [30] Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation
    Chudak, FA
    Roughgarden, T
    Williamson, DP
    MATHEMATICAL PROGRAMMING, 2004, 100 (02) : 411 - 421