Necessary and sufficient conditions for equilibrium in the Nash sense in a noncooperative differential game of several players

被引:0
|
作者
Gagina, O.M. [1 ]
机构
[1] Irkutskij VTs SO RAN, Irkutsk, Russia
来源
关键词
11;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:71 / 77
相关论文
共 50 条
  • [11] Necessary and sufficient optimality conditions for nonsmooth nonconvex generalized Nash equilibrium problems
    Ghasemi, A.
    Movahedian, N.
    OPTIMIZATION, 2024,
  • [12] The necessary and sufficient conditions for chemical equilibrium
    Smolenskii, E. A.
    Ryzhov, A. N.
    Chuvaeva, I. V.
    Maslova, L. K.
    Lapidus, A. L.
    RUSSIAN CHEMICAL BULLETIN, 2018, 67 (06) : 966 - 971
  • [13] The necessary and sufficient conditions for chemical equilibrium
    E. A. Smolenskii
    A. N. Ryzhov
    I. V. Chuvaeva
    L. K. Maslova
    A. L. Lapidus
    Russian Chemical Bulletin, 2018, 67 : 966 - 971
  • [14] APPROXIMATION OF NASH EQUILIBRIUM POINTS IN AN N-PERSON NONCOOPERATIVE GAME
    HANSEN, T
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (03) : 622 - 637
  • [15] Necessary and sufficient conditions for the existence of boundaries of the equilibrium set in antagonistic differential games
    Smol'yakov, ER
    DIFFERENTIAL EQUATIONS, 1997, 33 (12) : 1641 - 1652
  • [16] On necessary and sufficient conditions for differential flatness
    Levine, Jean
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (01) : 47 - 90
  • [17] On necessary and sufficient conditions for differential flatness
    Jean Lévine
    Applicable Algebra in Engineering, Communication and Computing, 2011, 22 : 47 - 90
  • [18] On necessary and sufficient conditions for solvability of game forms
    Abdou, J
    Keiding, H
    MATHEMATICAL SOCIAL SCIENCES, 2003, 46 (03) : 243 - 260
  • [19] Fixed-time consensus-based distributed Nash equilibrium seeking for noncooperative game with second-order players
    Wang, Mengxin
    Zhou, Mengting
    Qin, Sitian
    NEUROCOMPUTING, 2023, 555
  • [20] Sufficient conditions for Nash equilibrium point in the linear quadratic game for Markov jump positive systems
    Dragan, Vasile
    Ivanov, Ivan G.
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (15): : 2658 - 2667