SOUND-WAVE PROPAGATION IN ACOUSTOOPTICAL CRYSTALS OF PARATELLURITE AND CALOMEL.

被引:0
|
作者
Voronova, M.A.
Parygin, V.N.
机构
关键词
CRYSTALS - Acoustic Properties - LIGHT - Acoustooptical Effects - OPTICAL INSTRUMENTS;
D O I
暂无
中图分类号
学科分类号
摘要
The acoustic field of a slow quasi-shear wave created by a plane converter with a Gaussian aperture function close to the crystallographic direction is investigated for paratellurite and calomomel crystals. The parabolic approximation of the wave-vector surface is used. The dependence of the parabolic-approximation coefficients on the wave-vector direction is given. The limits of parabolicity are given. The method of calculating the geometry of the acoustic beam excited along the axis is considered. The results are relevant to understanding the characteristics of acoustooptical instruments.
引用
收藏
页码:38 / 44
相关论文
共 50 条
  • [21] MULTIDIRECTIONAL SOUND-WAVE PROPAGATION THROUGH A TUBE BUNDLE
    MULHOLLAND, LS
    HECKL, MA
    JOURNAL OF SOUND AND VIBRATION, 1994, 176 (03) : 377 - 398
  • [22] The linearized Boltzmann equation: Sound-wave propagation in a rarefied gas
    R. D. M. Garcia
    C. E. Siewert
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 57 : 94 - 122
  • [23] SOUND-WAVE PROPAGATION IN FLUIDS WITH COUPLED CHEMICAL-REACTIONS
    MARGULIES, TS
    SCHWARZ, WH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 78 (02): : 605 - 615
  • [24] PROPAGATION OF A STRONG SOUND-WAVE IN A PLANE-LAYERED MEDIUM
    FRIDMAN, VE
    SOVIET PHYSICS ACOUSTICS-USSR, 1976, 22 (04): : 349 - 350
  • [25] FINITE-ELEMENT SIMULATION OF NONLINEAR SOUND-WAVE PROPAGATION
    KAGAWA, Y
    TSUCHIYA, T
    YAMABUCHI, T
    KAWABE, H
    FUJII, T
    JOURNAL OF SOUND AND VIBRATION, 1992, 154 (01) : 125 - 145
  • [26] Molecular Kinetic Approach to the Problem Computing Sound-Wave Propagation
    Tsukamoto, M.
    Sakurai, A.
    Iwatsu, R.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 409 - 413
  • [27] UNDERWATER SOUND-WAVE PROPAGATION IN PRESENCE OF A RANDOMLY PERTURBED PROFILE
    BESIERIS, IM
    KOHLER, WE
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 60 : S33 - S33
  • [28] The linearized Boltzmann equation: Sound-wave propagation in a rarefied gas
    Garcia, RDM
    Siewert, CE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 57 (01): : 94 - 122
  • [29] Sound-wave defection
    Robertson, G
    PHOTONICS SPECTRA, 1997, 31 (05) : 93 - 93
  • [30] SOUND-WAVE PROPAGATION IN A 2-COMPONENT FERMI-LIQUID
    KURASAWA, H
    YUKAWA, T
    PHYSICS LETTERS B, 1984, 138 (1-3) : 13 - 17