Three solutions property of Ambrosetti-Prodi problem

被引:0
|
作者
Dai, Qiuyi [1 ]
机构
[1] Dep of Basic Science
来源
Xiangtan Kuangye Xueyuan xuebao | 1993年 / 8卷 / 03期
关键词
Boundary value problems - Differential equations - Function evaluation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider with Ambrosetti-prodi problem. {-Δu = f(x, u)+h(x)tΦ1 in Ω u = 0 on &partΩ if f(x, u) and h(x) satisfy some suitable conditions then we can prove a three solutions property of the problem.
引用
收藏
页码:74 / 78
相关论文
共 50 条
  • [41] A quasi-linear Neumann problem of Ambrosetti-Prodi type on extension domains
    Velez-Santiago, Alejandro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 : 191 - 210
  • [42] Exact number of single bubbling solutions for elliptic problems of Ambrosetti-Prodi type
    Guo, Yuxia
    Li, Benniao
    Yan, Shusen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [43] Geometric Aspects of Ambrosetti-Prodi Operators with Lipschitz Nonlinearities
    Tomei, Carlos
    Zaccur, Andre
    ANALYSIS AND TOPOLOGY IN NONLINEAR DIFFERENTIAL EQUATIONS: A TRIBUTE TO BERNHARD RUF ON THE OCCASION OF HIS 60TH BIRTHDAY, 2014, 85 : 445 - 456
  • [44] Continuation theorems for Ambrosetti-Prodi type periodic problems
    Mawhin, J
    Rebelo, C
    Zanolin, F
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (01) : 87 - 126
  • [45] Ambrosetti-Prodi problems for the Robin (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [46] Almost periodic equations and conditions of Ambrosetti-Prodi type
    Ortega, R
    Tarallo, M
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 135 : 239 - 254
  • [47] An Ambrosetti-Prodi type result for fractional spectral problems
    Ambrosio, Vincenzo
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 412 - 429
  • [48] A QUASI-LINEAR NONLOCAL VENTTSEL' PROBLEM OF AMBROSETTI-PRODI TYPE ON FRACTAL DOMAINS
    Lancia, Maria Rosaria
    Velez-Santiago, Alejandro
    Vernole, Paola
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) : 4487 - 4518
  • [49] AMBROSETTI-PRODI TYPE RESULTS FOR A NEUMANN PROBLEM WITH A MEAN CURVATURE OPERATOR IN MINKOWSKI SPACES
    Chen, Tianlan
    Duan, Lei
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) : 1627 - 1635
  • [50] On critical Ambrosetti-Prodi type problems involving mixed operator
    Sharma, Lovelesh
    Mukherjee, Tuhina
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, : 1187 - 1216