Embedded invariant manifolds and ordering of chaotic synchronization of diffusively coupled systems

被引:0
|
作者
Belykh, Igor V. [1 ]
Belykh, Vladimir N. [1 ]
机构
[1] Inst for Applied Mathematics and, Cybernetics, Nizhny Novgorod, Russia
关键词
Differential equations - Invariance - Synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
Results of a qualitative analysis of an array of diffusively coupled identical continuous time dynamical systems are presented. The effect of partial chaotic synchronization are investigated via the linear invariant manifolds of the corresponding differential equations. Existence of various synchronization manifolds, a hierarchy and embedding of the manifolds of the coupled system are discovered. The general rigorous results are illustrated through examples of coupled Rossler systems.
引用
收藏
页码:346 / 349
相关论文
共 50 条
  • [41] The synchronization of linearly bidirectional coupled chaotic systems
    Yu, YG
    Zhang, SC
    CHAOS SOLITONS & FRACTALS, 2004, 22 (01) : 189 - 197
  • [42] Impulsive synchronization of bidirectionally coupled chaotic systems
    Zheng, Song
    Zheng, Lin
    PHYSICA SCRIPTA, 2013, 88 (03)
  • [43] Emergent hybrid synchronization in coupled chaotic systems
    Padmanaban, E.
    Boccaletti, Stefano
    Dana, S. K.
    PHYSICAL REVIEW E, 2015, 91 (02)
  • [44] Function projective synchronization in coupled chaotic systems
    Du, Hongyue
    Zeng, Qingshuang
    Wang, Changhong
    Ling, Mingxiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 705 - 712
  • [45] The theorems of unsynchronizability and synchronization for coupled chaotic systems
    Ge, Zheng-Ming
    Tsen, Pu-Chien
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (01) : 101 - 112
  • [46] Stability Conditions for Cluster Synchronization in Directed Networks of Diffusively Coupled Nonlinear Systems
    Zhai, Shidong
    Zheng, Wei Xing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (01) : 413 - 423
  • [47] Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach
    Aminzare, Zahra
    Dey, Biswadip
    Davison, Elizabeth N.
    Leonard, Naomi Ehrich
    Journal of Nonlinear Science, 2020, 30 (05): : 2235 - 2257
  • [48] On Optimal Synchronization of Diffusively Coupled Heterogeneous Van der Pol OscillatorsOn Optimal Synchronization of Diffusively Coupled Heterogeneous Pol Oscillators
    Trummel, Tabea
    Liu, Zonglin
    Stursberg, Olaf
    IFAC PAPERSONLINE, 2023, 56 (02): : 9475 - 9480
  • [49] Invariant manifolds and cluster synchronization in a family of locally coupled map lattices
    Belykh, V
    Belykh, I
    Komrakov, N
    Mosekilde, E
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) : 245 - 256
  • [50] Synchronization of diffusively coupled oscillators near the homoclinic bifurcation
    Postnov, D
    Han, SK
    Kook, H
    PHYSICAL REVIEW E, 1999, 60 (03): : 2799 - 2807