Optimal estimation of two-qubit pure-state entanglement

被引:0
|
作者
Acián, Antonio [1 ]
Tarrach, Rolf [1 ]
Vidal, Guifreá [1 ]
机构
[1] Dept. d'Estructura Constituents M., Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
关键词
Electron transport properties - Matrix algebra - Parameter estimation - Polarization - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of optimally estimating the entanglement of an unknown pure state of two qubits was analyzed. For this purpose, the quality of the most general quantum measurements on N identical copies of the state was assessed through the gain of information they provide about the nonlocal parameter of the state. A solution to this problem was established and proven. In particular, it was shown that the optimal estimation of a nonlocal parameter can be done through a local measurement.
引用
收藏
页码:062307 / 062301
相关论文
共 50 条
  • [41] Optimal control of quantum state preparation and entanglement creation in two-qubit quantum system with bounded amplitude
    Li, Xikun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] Optimal observables to determine entanglement of a two qubit state
    Chaudhary, G.
    Ravishankar, V.
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (01):
  • [43] Optimal observables to determine entanglement of a two qubit state
    G. Chaudhary
    V. Ravishankar
    The European Physical Journal D, 2016, 70
  • [44] Universal feedback control of two-qubit entanglement
    Rafiee, Morteza
    Nourmandipour, Alireza
    Mancini, Stefano
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [45] A simple entanglement criterion of two-qubit system
    Zhao Chao-Ying
    Guo Qi-Zhi
    Tan Wei-Han
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (18):
  • [46] Quantifying entanglement of two-qubit Werner states
    Artur Czerwinski
    Communications in Theoretical Physics, 2021, 73 (08) : 77 - 83
  • [47] Entanglement cost of two-qubit orthogonal measurements
    Bandyopadhyay, Somshubhro
    Rahaman, Ramij
    Wootters, William K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [48] Quantifying entanglement of two-qubit Werner states
    Czerwinski, Artur
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (08)
  • [49] Analytically solvable two-qubit entanglement monotone
    Zhang, Jing
    Li, Chun-Wen
    Tarn, Tzyh-Jong
    Wu, Jian-Wu
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [50] Quantum control of two-qubit entanglement dissipation
    Allan I. Solomon
    Sophie G. Schirmer
    Journal of Russian Laser Research, 2011, 32 : 502 - 510