Symmetry lie groups of PDE of surfaces with constant Gaussian curvature

被引:0
|
作者
Math. Dept., University Politehnica of Bucharest, Bucharest, Romania [1 ]
机构
来源
UPB Sci Bull Ser A | / 3-4卷 / 123-136期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Translation Surfaces in Lie Groups with Constant Gaussian Curvature
    Han, Xu
    Hou, Zhonghua
    [J]. TRANSFORMATION GROUPS, 2024,
  • [2] Constant mean curvature surfaces in metric Lie groups
    Meeks, William H., III
    Perez, Joaquin
    [J]. GEOMETRIC ANALYSIS: PARTIAL DIFFERENTIAL EQUATIONS AND SURFACES, 2012, 570 : 25 - +
  • [3] Phyllotaxis on surfaces of constant Gaussian curvature
    Sadoc, J. F.
    Charvolin, J.
    Rivier, N.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (29)
  • [4] CONSTANT GAUSSIAN CURVATURE SURFACES IN THE 3-SPHERE VIA LOOP GROUPS
    Brander, David
    Inoguchi, Jun-ichi
    Kobayashi, Shimpei
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (02) : 281 - 303
  • [5] The Gaussian curvature of minimal surfaces and Heinz' constant
    Hall, RR
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 502 : 19 - 28
  • [6] Classification of separable surfaces with constant Gaussian curvature
    Thomas Hasanis
    Rafael López
    [J]. manuscripta mathematica, 2021, 166 : 403 - 417
  • [7] Affine Translation Surfaces with Constant Gaussian Curvature
    Fu, Yu
    Hou, Zhong-Hua
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (02): : 337 - 343
  • [8] Classification of separable surfaces with constant Gaussian curvature
    Hasanis, Thomas
    Lopez, Rafael
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 403 - 417
  • [9] Hamiltonian formulation of surfaces with constant Gaussian curvature
    Trejo, Miguel
    Ben Amar, Martine
    Mueller, Martin Michael
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (42)
  • [10] Constant mean curvature proper-biharmonic surfaces of constant Gaussian curvature in spheres
    Loubeau, Eric
    Oniciuc, Cezar
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (03) : 997 - 1024