Central limit theorem for isotropic random walks on n-spheres for n -&gt infinity

被引:0
|
作者
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A local central limit theorem for random walks on expander graphs
    Chiclana, Rafael
    Peres, Yuval
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [22] Quenched central limit theorem for random walks with a spectral gap
    Conze, Jean-Pierre
    Le Borgne, Stephane
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (13-14) : 801 - 805
  • [23] Central limit theorem for the capacity of the range of stable random walks
    Cygan, Wojciech
    Sandric, Nikola
    Sebek, Stjepan
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2022, 94 (02) : 226 - 247
  • [24] A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
    Roesler, Margit
    Voit, Michael
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [25] A quenched functional central limit theorem for planar random walks in random sceneries
    Guillotin-Plantard, Nadine
    Poisat, Julien
    dos Santos, Renato Soares
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [26] QUENCHED CENTRAL LIMIT THEOREM FOR RANDOM WALKS IN DOUBLY STOCHASTIC RANDOM ENVIRONMENT
    Toth, Balint
    ANNALS OF PROBABILITY, 2018, 46 (06): : 3558 - 3577
  • [27] ALMOST SURE CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT
    Nakashima, Makoto
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 351 - 373
  • [28] A QUENCHED CENTRAL LIMIT THEOREM FOR REVERSIBLE RANDOM WALKS IN A RANDOM ENVIRONMENT ON Z
    Hoang-Chuong Lam
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 1051 - 1064
  • [29] Local wave numbers on an n-spheres
    Gutti, Sashideep
    Thiruvikraman, P. K.
    Raviteja, K.
    Haque, Asrarul
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (06)
  • [30] Small volume on big n-spheres
    Croke, Christopher B.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 715 - 717