Convergence of mimetic finite difference discretizations of the diffusion equation

被引:0
|
作者
Berndt, M. [1 ]
Lipnikov, K. [1 ]
Moulton, D. [1 ]
Shashkov, M. [1 ]
机构
[1] Los Alamos National Laboratory, Theoretical Division, Mail Stop B284, Los Alamos, NM 87545, United States
来源
关键词
Los Alamos National Laboratory; Theoretical Division; Mail Stop B284; Los Alamos; NM; 87545 †Department of Mathematics; University of Houston; Houston; TX; 77204 This work was supported by the Department of Energy; under contract W-7405-ENG-36; and by the Los Alamos Computer Science Institute (LACSI);
D O I
暂无
中图分类号
学科分类号
摘要
15
引用
收藏
页码:265 / 284
相关论文
共 50 条
  • [31] Convergence of finite difference schemes for the Benjamin–Ono equation
    Rajib Dutta
    Helge Holden
    Ujjwal Koley
    Nils Henrik Risebro
    Numerische Mathematik, 2016, 134 : 249 - 274
  • [32] NUMERICAL SOLUTION OF THE TIME FRACTIONAL ORDER DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS USING MIMETIC FINITE DIFFERENCE
    Gonzales Herrera, Mardo
    Torres Ledesma, Cesar E.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 3044 - 3062
  • [33] Mimetic finite difference methods for diffusion equations on unstructured triangular grid
    Ganzha, V
    Liska, R
    Shashkov, M
    Zenger, C
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 368 - 377
  • [34] Mimetic Finite Difference Schemes with Conditional Maximum Principle for Diffusion Problems
    Lipnikov, Konstantin
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 373 - 381
  • [35] Convergence of fractional step mimetic finite difference discretization for semilinear parabolic problems
    Arraras, A.
    Portero, L.
    Jorge, J. C.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) : 473 - 485
  • [36] The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes
    Lipnikov, K
    Shashkov, M
    Svyatskiy, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 473 - 491
  • [37] Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme
    Safdari, H.
    Mesgarani, H.
    Javidi, M.
    Aghdam, Y. Esmaeelzade
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [38] Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme
    H. Safdari
    H. Mesgarani
    M. Javidi
    Y. Esmaeelzade Aghdam
    Computational and Applied Mathematics, 2020, 39
  • [39] Boundary and interface methods for energy stable finite difference discretizations of the dynamic beam equation
    Eriksson, Gustav
    Werpers, Jonatan
    Niemela, David
    Wik, Niklas
    Zethrin, Valter
    Mattsson, Ken
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 476
  • [40] Mimetic finite difference method
    Lipnikov, Konstantin
    Manzini, Gianmarco
    Shashkov, Mikhail
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 1163 - 1227