LIOUVILLE EQUATION IN INFINITELY DIMENSIONAL SEPARABLE HILBERT SPACE.

被引:0
|
作者
Szczepanski, Janusz [1 ]
机构
[1] Polish Acad of Sciences, Dep of, Fluid Mechanics, Warsaw, Pol, Polish Acad of Sciences, Dep of Fluid Mechanics, Warsaw, Pol
关键词
D O I
暂无
中图分类号
学科分类号
摘要
9
引用
收藏
页码:279 / 292
相关论文
共 50 条
  • [31] CONSTRUCTIVE PROOFS OF REPRESENTATION THEOREMS IN SEPARABLE HILBERT SPACE
    HILDEBRANDT, S
    WIENHOLTZ, E
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (03) : 369 - &
  • [33] SPACES OF CLASSICAL FUNCTIONS ON A SEPARABLE HILBERT-SPACE
    SLOWIKOWSKI, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (12): : 439 - 441
  • [34] WEIERSTRASS THEOREM FOR A COMPLEX SEPARABLE HILBERT-SPACE
    CHAIKA, M
    PERLMAN, SJ
    JOURNAL OF APPROXIMATION THEORY, 1975, 15 (01) : 18 - 22
  • [35] ARITHMETICS OF DEFINITE PROBABILITY LAWS ON SEPARABLE HILBERT SPACE
    ROUSSEAU, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (02): : 141 - 143
  • [36] SPACES OF CLASSICAL FUNCTIONS ON A SEPARABLE HILBERT-SPACE
    SLOWIKOWSKI, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (11): : 381 - 384
  • [37] LINEAR ALEATORY OPERATORS LIMITED IN A SEPARABLE HILBERT SPACE
    DEBRUCQ, D
    DEARAYA, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (26): : 997 - &
  • [38] GAUSSIAN OPERATOR SEMIGROUPS IN THE SPACE OF BOREL FUNCTIONS ON A SEPARABLE HILBERT SPACE
    Galkin, O. E.
    Galkina, S. Yu
    Yastrebova, I. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 1320 - 1340
  • [39] Quantum-optical states in finite-dimensional Hilbert space. I. General formalism
    Miranowicz, A
    Leonski, W
    Imoto, N
    MODERN NONLINEAR OPTICS, PT 1, SECOND ED, 2001, 119 : 155 - 193
  • [40] Quantum-optical states in finite-dimensional Hilbert space. II. State generation
    Leonski, W
    Miranowicz, A
    MODERN NONLINEAR OPTICS, PT 1, SECOND ED, 2001, 119 : 195 - 213