Theory analysis for error function to feedforward neural networks with noise

被引:0
|
作者
Jin, Cong
机构
来源
| 2002年 / Science Press卷 / 39期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Regularizing the effect of input noise injection in feedforward neural networks training
    Seghouane, AK
    Moudden, Y
    Fleury, G
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (03): : 248 - 254
  • [32] Improving the Performance of Feedforward Neural Networks by Noise Injection into Hidden Neurons
    Nait Charif Hammadi
    Hideo Ito
    Journal of Intelligent and Robotic Systems, 1998, 21 : 103 - 115
  • [33] Penalty-function approach for pruning feedforward neural networks
    Setiono, Rudy
    Neural Computation, 1997, 9 (01):
  • [34] Construction and approximation for a class of feedforward neural networks with sigmoidal function
    Meng, Xinhong
    Yan, Jinyao
    Ye, Hailiang
    Cao, Feilong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [35] A penalty-function approach for pruning feedforward neural networks
    Setiono, R
    NEURAL COMPUTATION, 1997, 9 (01) : 185 - 204
  • [36] A sensitivity analysis algorithm for pruning feedforward neural networks
    Engelbrecht, AP
    Cloete, I
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1274 - 1278
  • [37] Numeric sensitivity analysis applied to feedforward neural networks
    Montaño, JJ
    Palmer, A
    NEURAL COMPUTING & APPLICATIONS, 2003, 12 (02): : 119 - 125
  • [38] Output Range Analysis for Deep Feedforward Neural Networks
    Dutta, Souradeep
    Jha, Susmit
    Sanakaranarayanan, Sriram
    Tiwari, Ashish
    NASA FORMAL METHODS, NFM 2018, 2018, 10811 : 121 - 138
  • [39] Sensitivity analysis for selective learning by feedforward neural networks
    Engelbrecht, AP
    FUNDAMENTA INFORMATICAE, 2001, 46 (03) : 219 - 252
  • [40] A fast and robust recursive prediction error learning algorithm for feedforward neural networks
    Zhang, YM
    Li, XR
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 2036 - 2041