Application of Walsh Functions to the Identification Problem of One-Dimensional Linear Systems.

被引:0
|
作者
Debowski, Andrzej
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
CONTROL SYSTEMS, LINEAR
引用
收藏
页码:19 / 29
相关论文
共 50 条
  • [31] Hierarchical heterogeneous one-dimensional problem in linear viscoelastic media
    Cruz-González, O.L.
    Ramírez-Torres, A.
    Rodríguez-Ramos, R.
    Penta, R.
    Lebon, F.
    European Journal of Mechanics, A/Solids, 2022, 95
  • [32] STUDY OF SURFACE STATES OF ONE-DIMENSIONAL SEMI-INFINITE SYSTEMS.
    Roy, C.L.
    Roy, G.
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1980, 101 (03): : 388 - 395
  • [33] ONE-DIMENSIONAL OVERLAP FUNCTIONS AND THEIR APPLICATION TO AUGER RECOMBINATION IN SEMICONDUCTORS
    BEATTIE, AR
    LANDSBERG, PT
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 258 (1295): : 486 - 495
  • [34] ROBUST IDENTIFICATION OF SYSTEMS WITH WALSH-FUNCTIONS
    DAI, H
    SINHA, NK
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1990, 6 (04): : 633 - 654
  • [35] Application of Walsh functions to construct an explicit projection algorithm for identification of distributed systems
    Sakalauskas, E.I.
    Spyachyunas, G.B.
    1600,
  • [36] CORRELATION-FUNCTIONS IN ONE-DIMENSIONAL SYSTEMS WITH STRONG INTERACTION
    EFETOV, KB
    LARKIN, AI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1975, 69 (02): : 764 - 776
  • [37] ELECTRONIC WAVE-FUNCTIONS IN ONE-DIMENSIONAL DISORDERED SYSTEMS
    TONG, BY
    WONG, TC
    PHYSICAL REVIEW B, 1972, 6 (12): : 4482 - 4490
  • [38] Correlation functions and momentum distribution of one-dimensional Bose systems
    Astrakharchik, GE
    Giorgini, S
    PHYSICAL REVIEW A, 2003, 68 (03):
  • [39] CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL QUANTUM-SYSTEMS
    GIAMARCHI, T
    SCHULZ, HJ
    PHYSICAL REVIEW B, 1989, 39 (07): : 4620 - 4629
  • [40] ADAPTIVELY LOCAL ONE-DIMENSIONAL SUBPROBLEMS WITH APPLICATION TO A DECONVOLUTION PROBLEM
    FAN, JQ
    ANNALS OF STATISTICS, 1993, 21 (02): : 600 - 610