Determination of Maxima for Arbitrary Orders

被引:0
|
作者
Baryshnikov, Y. M.
Orlova, E. S.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [31] Asymptotic cycles in fractional maps of arbitrary positive orders
    Edelman, Mark
    Helman, Avigayil B.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (01) : 181 - 206
  • [32] ASSOCIATED WEBER INTEGRAL-TRANSFORMS OF ARBITRARY ORDERS
    NASIM, C
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1989, 20 (11): : 1126 - 1138
  • [33] SEPARATE DETERMINATION OF DYNAMIC AND STATIC DISTORTIONS FROM WEAKENING OF INTERFERENTIAL MAXIMA OF SOLID SOLUTIONS WHEN PHONON SPECTRUM IS ARBITRARY ASPECT
    SEMENOVSKAYA, SV
    UMANSKII, YS
    DOKLADY AKADEMII NAUK SSSR, 1962, 145 (02): : 312 - &
  • [34] Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
    Mecholsky, Nicholas A.
    Akhbarifar, Sepideh
    Lutze, Werner
    Brandys, Marek
    Pegg, Ian L.
    DATA IN BRIEF, 2021, 39
  • [35] PRECISE DETERMINATION OF REACTION ORDERS
    KITTRELL, JR
    MEZAKI, R
    WATSON, CC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1966, 58 (05): : 51 - &
  • [36] Genus number of arbitrary orders in real quadratic number fields
    Kahl, H
    ARCHIV DER MATHEMATIK, 1996, 66 (03) : 187 - 193
  • [37] HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders
    Duan, Junbo
    Wang, Qing
    Wang, Yu-Ping
    IEEE ACCESS, 2021, 9 : 155977 - 155987
  • [38] Some Remarks on Approximations of Arbitrary Binary Relations by Partial Orders
    Janicki, Ryszard
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2008, 5306 : 81 - 91
  • [39] On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics
    El-Sayed, AMA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (49): : 8647 - 8654
  • [40] A Method for Geodesic Distance on Subdivision of Trees With Arbitrary Orders and Their Applications
    Ma, Fei
    Wang, Ping
    Luo, Xudong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2063 - 2075