INSTABILITY OF A CELLULAR FLOW.

被引:0
|
作者
Gotoh, Kanefusa [1 ]
Yamada, Michio [1 ]
机构
[1] Kyoto Univ, Research Inst for, Mathematical Sciences, Kyoto, Jpn, Kyoto Univ, Research Inst for Mathematical Sciences, Kyoto, Jpn
关键词
MATHEMATICAL TECHNIQUES - Eigenvalues and Eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of the instability of parallel periodic flows is extended to the two-dimensional cellular flows. The eigenvalue equation is derived to find the critical Reynolds number to the disturbance with small Floquet exponents. The theory is applied to the cellular flow: U equals ( minus sin y, sin x) and the critical Reynolds number is found to be (2)** one-half .
引用
收藏
相关论文
共 50 条
  • [31] STUDY OF PERISTALTIC FLOW.
    Pozrikidis, C.
    Journal of Fluid Mechanics, 1987, 180 : 515 - 527
  • [32] MEASUREMENTS IN MERGING FLOW.
    Maxwell, W.Hall C.
    Snorrason, Arni
    Research Report - University of Illinois at Urbana-Champaign, Water Resources Center, 1981, (155):
  • [33] EVENING OUT THE FLOW.
    Drake, Bob
    Pit and Quarry, 1987, 79 (11): : 31 - 32
  • [34] ON ROTATING DISK FLOW.
    Brady, John F.
    Durlofsky, Louis
    Journal of Fluid Mechanics, 1987, 175 : 363 - 394
  • [35] GEOMETRY OF MAGNETOHYDRODYNAMIC FLOW.
    Purushotham, G.
    Madhusudan
    Defence Science Journal, 1972, 22 (02) : 131 - 134
  • [36] Studies of Peristaltic Flow.
    Zimmermann, Rolf-Udo
    1600,
  • [37] Subcritical junction flow.
    Gurram, SK
    Karki, KS
    Hager, WH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (05): : 447 - 455
  • [38] The dynamics of capillary flow.
    Washburn, EW
    PHYSICAL REVIEW, 1921, 17 (03): : 273 - 283
  • [39] Sucking in as a factor in the flow.
    Buttersack, F
    VIRCHOWS ARCHIV FUR PATHOLOGISCHE ANATOMIE UND PHYSIOLOGIE UND FUR KLINISCHE MEDIZIN, 1932, 285 (02): : 558 - 590
  • [40] TURBULENCE IN MULTIPHASE FLOW.
    Brauer, Heinz
    German Chemical Engineering, 1980, 3 (03): : 149 - 163