Theory of biexcitons in one-dimensional polymers

被引:0
|
作者
机构
来源
Phys Rev B | / 7卷 / 3790期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Theory of one-dimensional and quasi-one-dimensional heat conduction
    Gladkov, S. O.
    Zhurnal Tekhnicheskoi Fiziki, 42 (07):
  • [42] PUMP-PROBE SPECTRUM OF INTERACTING ONE-DIMENSIONAL EXCITONS - BIEXCITONS AND J-AGGREGATES
    SPANO, FC
    CHEMICAL PHYSICS LETTERS, 1995, 234 (1-3) : 29 - 34
  • [43] Asymmetrically doped one-dimensional trans-polymers
    Caldas, Heron
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 3159 - 3162
  • [44] Boundary conditions and the stability of one-dimensional conducting polymers
    Wei, Jianhua
    Xie, Shijie
    Mei, Liangmo
    Wuli Xuebao/Acta Physica Sinica, 1997, 46 (04): : 747 - 755
  • [45] Molecular Nanostamp Based on One-Dimensional Porphyrin Polymers
    Kanaizuka, Katsuhiko
    Izumi, Atsushi
    Ishizaki, Manabu
    Kon, Hiroki
    Togashi, Takanari
    Miyake, Ryosuke
    Ishida, Takao
    Tamura, Ryo
    Haga, Masa-aki
    Moritani, Youji
    Sakamoto, Masatomi
    Kurihara, Masato
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 6879 - 6885
  • [46] One-dimensional zinc(II) fumarate coordination polymers
    Bekoe, S. L.
    Bats, J. W.
    Schmidt, M. U.
    JOURNAL OF COORDINATION CHEMISTRY, 2015, 68 (01) : 118 - 129
  • [47] One-dimensional copper polymers with pentadentate diazine ligands
    Bai, Y
    Dang, DB
    Cao, X
    Duan, CY
    Meng, QJ
    INORGANIC CHEMISTRY COMMUNICATIONS, 2006, 9 (01) : 86 - 89
  • [48] ONE-DIMENSIONAL COORDINATION POLYMERS - APPLICATIONS TO MATERIAL SCIENCE
    CHEN, CT
    SUSLICK, KS
    COORDINATION CHEMISTRY REVIEWS, 1993, 128 (1-2) : 293 - 322
  • [49] Weak interaction limits for one-dimensional random polymers
    Remco van der Hofstad
    Frank den Hollander
    Wolfgang König
    Probability Theory and Related Fields, 2003, 125 : 483 - 521
  • [50] Weak interaction limits for one-dimensional random polymers
    van der Hofstad, R
    den Hollander, F
    König, W
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (04) : 483 - 521